Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald J. Beyers is active.

Publication


Featured researches published by Ronald J. Beyers.


Science Translational Medicine | 2014

Sustained Normalization of Neurological Disease after Intracranial Gene Therapy in a Feline Model

Victoria J. McCurdy; A. Johnson; Heather L. Gray-Edwards; Ashley N. Randle; Brandon L. Brunson; Nancy E. Morrison; Nouha Salibi; Jacob A. Johnson; Misako Hwang; Ronald J. Beyers; Stanley G. LeRoy; Stacy Maitland; Thomas S. Denney; Nancy R. Cox; Henry J. Baker; Miguel Sena-Esteves; Douglas R. Martin

In a feline model of lysosomal storage disease, intracranial gene therapy achieved therapeutic efficacy in the CNS and increased long-term survival. Gene Therapy for a Lysosomal Storage Disease GM1 gangliosidosis results from defects in the lysosomal enzyme β-galactosidase (β-gal) and subsequent accumulation of GM1 ganglioside, which causes neurodegeneration and premature death. Although no effective treatment exists, encouraging gene therapy data from the GM1 mouse model warranted an evaluation of the feasibility for human clinical application in a large animal model. In a new study, McCurdy et al. injected an adeno-associated viral vector encoding feline β-gal bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of cats with GM1 gangliosidosis. Sixteen weeks after injection, β-gal activity and GM1 storage were normalized throughout the central nervous system of the animals, with accompanying increases in enzyme activity in cerebrospinal fluid and liver. In long-term studies, the mean survival of 12 treated cats with GM1 gangliosidosis was >38 months, compared to 8 months for untreated cats. A minority of cats that progressed to the humane endpoint had low β-gal activity in the spinal cord, yet still lived >2.5 times longer than untreated animals. Most of the treated GM1 cats demonstrated subtle or no gait abnormalities, and magnetic resonance imaging showed normalization of brain architecture up to at least 32 months of age. Long-term correction of the disease phenotype in cats with GM1 gangliosidosis suggests that gene therapy may be useful for treating the human disorder. Progressive debilitating neurological defects characterize feline GM1 gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal β-galactosidase. No effective therapy exists for affected children, who often die before age 5 years. An adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of GM1 gangliosidosis. Gene therapy normalized β-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated GM1 animals was >38 months, compared to 8 months for untreated animals. Seven of the eight treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the GM1 gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder.


Journal of the American Chemical Society | 2014

A Mononuclear Manganese(II) Complex Demonstrates a Strategy To Simultaneously Image and Treat Oxidative Stress

Meng Yu; Stephen L. Ambrose; Zachary L. Whaley; Sanjun Fan; John D. Gorden; Ronald J. Beyers; Dean D. Schwartz; Christian R. Goldsmith

A manganese(II) complex with a ligand containing an oxidizable quinol group serves as a turn-on sensor for H2O2. Upon oxidation, the relaxivity of the complex in buffered water increases by 0.8 mM(-1) s(-1), providing a signal that can be detected and quantified by magnetic resonance imaging. The complex also serves as a potent antioxidant, suggesting that this and related complexes have the potential to concurrently visualize and alleviate oxidative stress.


Journal of Neuroscience Methods | 2014

High resolution MRI anatomy of the cat brain at 3 Tesla

Heather L. Gray-Edwards; Nouha Salibi; Eleanor M. Josephson; Judith A. Hudson; Nancy R. Cox; Ashley N. Randle; Victoria J. McCurdy; Allison M. Bradbury; Diane U. Wilson; Ronald J. Beyers; Thomas S. Denney; Douglas R. Martin

BACKGROUND Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinsons disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. NEW METHOD 3Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3mm×0.3mm×1mm resolution). Anatomic structures were identified based on feline and canine histology. RESULTS T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. COMPARISON WITH EXISTING METHODS Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in three dimensions for the first time. CONCLUSIONS These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models.


Chemical Senses | 2016

Enhancement of Odor-Induced Activity in the Canine Brain by Zinc Nanoparticles: A Functional MRI Study in Fully Unrestrained Conscious Dogs

Hao Jia; Oleg Pustovyy; Yun Wang; Paul Waggoner; Ronald J. Beyers; John Schumacher; Chester Wildey; Edward E. Morrison; Nouha Salibi; Thomas S. Denney; Vitaly Vodyanoy; Gopikrishna Deshpande

Using noninvasive in vivo functional magnetic resonance imaging (fMRI), we demonstrate that the enhancement of odorant response of olfactory receptor neurons by zinc nanoparticles leads to increase in activity in olfaction-related and higher order areas of the dog brain. To study conscious dogs, we employed behavioral training and optical motion tracking for reducing head motion artifacts. We obtained brain activation maps from dogs in both anesthetized state and fully conscious and unrestrained state. The enhancement effect of zinc nanoparticles was higher in conscious dogs with more activation in higher order areas as compared with anesthetized dogs. In conscious dogs, voxels in the olfactory bulb and hippocampus showed higher activity to odorants mixed with zinc nanoparticles as compared with pure odorants, odorants mixed with gold nanoparticles as well as zinc nanoparticles alone. These regions have been implicated in odor intensity processing in other species including humans. If the enhancement effect of zinc nanoparticles observed in vivo are confirmed by future behavioral studies, zinc nanoparticles may provide a way for enhancing the olfactory sensitivity of canines for detection of target substances such as explosives and contraband substances at very low concentrations, which would otherwise go undetected.


Brain Structure & Function | 2015

Anterior-posterior dissociation of the default mode network in dogs.

Sreenath P. Kyathanahally; Hao Jia; Oleg Pustovyy; Paul Waggoner; Ronald J. Beyers; John Schumacher; Jay Barrett; Edward E. Morrison; Nouha Salibi; Thomas S. Denney; Vitaly Vodyanoy; Gopikrishna Deshpande

The default mode network (DMN) in humans has been extensively studied using seed-based correlation analysis (SCA) and independent component analysis (ICA). While DMN has been observed in monkeys as well, there are conflicting reports on whether they exist in rodents. Dogs are higher mammals than rodents, but cognitively not as advanced as monkeys and humans. Therefore, they are an interesting species in the evolutionary hierarchy for probing the comparative functions of the DMN across species. In this study, we sought to know whether the DMN, and consequently its functions such as self-referential processing, are exclusive to humans/monkeys or can we also observe the DMN in animals such as dogs. To address this issue, resting state functional MRI data from the brains of lightly sedated dogs and unconstrained and fully awake dogs were acquired, and ICA and SCA were performed for identifying the DMN. Since anesthesia can alter resting state networks, confirming our results in awake dogs was essential. Awake dog imaging was accomplished by training the dogs to keep their head still using reinforcement behavioral adaptation techniques. We found that the anterior (such as anterior cingulate and medial frontal) and posterior regions (such as posterior cingulate) of the DMN were dissociated in both awake and anesthetized dogs.


Molecular Genetics and Metabolism | 2015

Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy

Heather L. Gray-Edwards; Brandon L. Brunson; Merrilee Holland; Adrien-Maxence Hespel; Allison M. Bradbury; Victoria J. McCurdy; Patricia M. Beadlescomb; Ashley N. Randle; Nouha Salibi; Thomas S. Denney; Ronald J. Beyers; A. Johnson; Meredith L. Voyles; Ronald D. Montgomery; Diane U. Wilson; Judith A. Hudson; Nancy R. Cox; Henry J. Baker; Miguel Sena-Esteves; Douglas R. Martin

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


International Journal of Molecular Sciences | 2015

Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

Hunter B. Rogers; Tareq Anani; Young Suk Choi; Ronald J. Beyers; Allan E. David

Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization.


American Journal of Physiology-heart and Circulatory Physiology | 2015

The role of frataxin in doxorubicin-mediated cardiac hypertrophy

Shravanthi Mouli; Gayani Nanayakkara; Abdullah AlAlasmari; Haitham Eldoumani; Xiaoyu Fu; Avery Berlin; Madhukar Lohani; Ben Nie; Robert D. Arnold; Andreas N. Kavazis; Forrest Smith; Ronald J. Beyers; Thomas S. Denney; Muralikrishnan Dhanasekaran; Juming Zhong; John C. Quindry; Rajesh Amin

Doxorubicin (DOX) is a highly effective anti-neoplastic agent; however, its cumulative dosing schedules are clinically limited by the development of cardiotoxicity. Previous studies have attributed the cause of DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the ensuing reactive oxygen species (ROS) formation. The present study investigates the role of frataxin (FXN), a mitochondrial iron-sulfur biogenesis protein, and its role in development of DOX-mediated mitochondrial dysfunction. Athymic mice treated with DOX (5 mg/kg, 1 dose/wk with treatments, followed by 2-wk recovery) displayed left ventricular hypertrophy, as observed by impaired cardiac hemodynamic performance parameters. Furthermore, we also observed significant reduction in FXN expression in DOX-treated animals and H9C2 cardiomyoblast cell lines, resulting in increased mitochondrial iron accumulation and the ensuing ROS formation. This observation was paralleled in DOX-treated H9C2 cells by a significant reduction in the mitochondrial bioenergetics, as observed by the reduction of myocardial energy regulation. Surprisingly, similar results were observed in our FXN knockdown stable cell lines constructed by lentiviral technology using short hairpin RNA. To better understand the cardioprotective role of FXN against DOX, we constructed FXN overexpressing cardiomyoblasts, which displayed cardioprotection against mitochondrial iron accumulation, ROS formation, and reduction of mitochondrial bioenergetics. Lastly, our FXN overexpressing cardiomyoblasts were protected from DOX-mediated cardiac hypertrophy. Together, our findings reveal novel insights into the development of DOX-mediated cardiomyopathy.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/− mice

Christopher Ballmann; Thomas S. Denney; Ronald J. Beyers; Tiffany Quindry; Matthew Romero; Rajesh Amin; Joshua T. Selsby; John C. Quindry

Duchenne Muscular Dystrophy (DMD) is associated with progressive cardiac pathology; however, the SIRT1/PGC1-α activator quercetin may cardioprotect dystrophic hearts. We tested the extent to which long-term 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in Mdx/Utrn+/- mice. At 2 mo, Mdx/Utrn+/- mice were fed quercetin-enriched (Mdx/Utrn+/--Q) or control diet (Mdx/Utrn+/-) for 8 mo. Control C57BL/10 (C57) animals were fed a control diet for 10 mo. Cardiac function was quantified by MRI at 2 and 10 mo. Spontaneous physical activity was quantified during the last week of treatment. At 10 mo hearts were excised for histological and biochemical analysis. Quercetin feeding improved various physiological indexes of cardiac function in diseased animals. Mdx/Utrn+/--Q also engaged in more high-intensity physical activity than controls. Histological analyses of heart tissues revealed higher expression and colocalization of utrophin and α-sarcoglycan. Lower abundance of fibronectin, cardiac damage (Hematoxylin Eosin-Y), and MMP9 were observed in quercetin-fed vs. control Mdx/Utrn+/- mice. Quercetin evoked higher protein abundance of PGC-1α, cytochrome c, ETC complexes I-V, citrate synthase, SOD2, and GPX compared with control-fed Mdx/Utrn+/- Quercetin decreased abundance of inflammatory markers including NFκB, TGF-β1, and F4/80 compared with Mdx/Utrn+/-; however, P-NFκB, P-IKBα, IKBα, CD64, and COX2 were similar between groups. Dietary quercetin enrichment improves cardiac function in aged Mdx/Utrn+/- mice and increases mitochondrial protein content and dystrophin glycoprotein complex formation. Histological analyses indicate a marked attenuation in pathological cardiac remodeling and indicate that long-term quercetin consumption benefits the dystrophic heart. NEW & NOTEWORTHY The current investigation provides first-time evidence that quercetin provides physiological cardioprotection against dystrophic pathology and is associated with improved spontaneous physical activity. Secondary findings suggest that quercetin-dependent outcomes are in part due to PGC-1α pathway activation.


Experimental Physiology | 2017

Long‐term dietary quercetin enrichment as a cardioprotective countermeasure in mdx mice

Christopher Ballmann; Thomas S. Denney; Ronald J. Beyers; Tiffany Quindry; Matthew A. Romero; Joshua T. Selsby; John C. Quindry

What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain‐dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn−/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn−/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin‐fed mice.

Collaboration


Dive into the Ronald J. Beyers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge