Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dean R. Campagna is active.

Publication


Featured researches published by Dean R. Campagna.


Nature Genetics | 2008

Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA)

Karin E. Finberg; Matthew M. Heeney; Dean R. Campagna; Yesim Aydinok; Howard A. Pearson; Kip R. Hartman; Mary Mayo; Stewart M. Samuel; John J. Strouse; Kyriacos Markianos; Nancy C. Andrews; Mark D. Fleming

Iron deficiency is usually attributed to chronic blood loss or inadequate dietary intake. Here, we show that iron deficiency anemia refractory to oral iron therapy can be caused by germline mutations in TMPRSS6, which encodes a type II transmembrane serine protease produced by the liver that regulates the expression of the systemic iron regulatory hormone hepcidin. These findings demonstrate that TMPRSS6 is essential for normal systemic iron homeostasis in humans.


Nature Genetics | 2005

Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells

Robert S. Ohgami; Dean R. Campagna; Eric L. Greer; Brendan Antiochos; Alice McDonald; Jing Chen; John J. Sharp; Yuko Fujiwara; Jane E. Barker; Mark D. Fleming

The reduction of iron is an essential step in the transferrin (Tf) cycle, which is the dominant pathway for iron uptake by red blood cell precursors. A deficiency in iron acquisition by red blood cells leads to hypochromic, microcytic anemia. Using a positional cloning strategy, we identified a gene, six-transmembrane epithelial antigen of the prostate 3 (Steap3), responsible for the iron deficiency anemia in the mouse mutant nm1054. Steap3 is expressed highly in hematopoietic tissues, colocalizes with the Tf cycle endosome and facilitates Tf-bound iron uptake. Steap3 shares homology with F420H2:NADP+ oxidoreductases found in archaea and bacteria, as well as with the yeast FRE family of metalloreductases. Overexpression of Steap3 stimulates the reduction of iron, and mice lacking Steap3 are deficient in erythroid ferrireductase activity. Taken together, these findings indicate that Steap3 is an endosomal ferrireductase required for efficient Tf-dependent iron uptake in erythroid cells.


Nature Genetics | 2009

Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia

Duane L. Guernsey; Haiyan Jiang; Dean R. Campagna; Susan C. Evans; Meghan Ferguson; Mark D. Kellogg; Mathieu Lachance; Makoto Matsuoka; Mathew Nightingale; Andrea L. Rideout; Louis Saint-Amant; Paul J. Schmidt; Andrew C. Orr; Sylvia S. Bottomley; Mark D. Fleming; Mark Ludman; Sarah Dyack; Conrad V. Fernandez; Mark E. Samuels

The sideroblastic anemias are a heterogeneous group of congenital and acquired hematological disorders whose morphological hallmark is the presence of ringed sideroblasts—bone marrow erythroid precursors containing pathologic iron deposits within mitochondria. Here, by positional cloning, we define a previously unknown form of autosomal recessive nonsyndromic congenital sideroblastic anemia, associated with mutations in the gene encoding the erythroid specific mitochondrial carrier family protein SLC25A38, and demonstrate that SLC25A38 is important for the biosynthesis of heme in eukaryotes.


Development | 2010

Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors.

Sofia B. Lizarraga; Steven P. Margossian; Marian H. Harris; Dean R. Campagna; An-Ping Han; Sherika Blevins; Raksha Mudbhary; Jane E. Barker; Christopher A. Walsh; Mark D. Fleming

Microcephaly affects ∼1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwigs anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors. We found that the an mutation is a genomic inversion of exon 4 of Cdk5rap2, resulting in an in-frame deletion of exon 4 from the mRNA. The finding that CDK5RAP2 human mutations cause microcephaly prompted further analysis of Cdk5rap2an/an mice and we demonstrated that these mice exhibit microcephaly comparable to that of the human disease, resulting from striking neurogenic defects that include proliferative and survival defects in neuronal progenitors. Cdk5rap2an/an neuronal precursors exit the cell cycle prematurely and many undergo apoptosis. These defects are associated with impaired mitotic progression coupled with abnormal mitotic spindle pole number and mitotic orientation. Our findings suggest that the reduction in brain size observed in humans with mutations in CDK5RAP2 is associated with impaired centrosomal function and with changes in mitotic spindle orientation during progenitor proliferation.


Pediatric Blood & Cancer | 2009

Systematic Molecular Genetic Analysis of Congenital Sideroblastic Anemia: Evidence for Genetic Heterogeneity and Identification of Novel Mutations

Anke K. Bergmann; Dean R. Campagna; Erin M. McLoughlin; Suneet Agarwal; Mark D. Fleming; Sylvia S. Bottomley; Ellis J. Neufeld

Sideroblastic anemias are heterogeneous congenital and acquired bone marrow disorders characterized by pathologic iron deposits in mitochondria of erythroid precursors. Among the congenital sideroblastic anemias (CSAs), the most common form is X‐linked sideroblastic anemia, due to mutations in 5‐aminolevulinate synthase (ALAS2). A novel autosomal recessive CSA, caused by mutations in the erythroid specific mitochondrial transporter SLC25A38, was recently defined. Other known etiologies include mutations in genes encoding the thiamine transporter SLC19A2, the RNA‐modifying enzyme pseudouridine synthase 1 (PUS1), a mitochondrial ATP‐binding cassette transporter (ABCB7), glutaredoxin 5 (GLRX5), as well as mitochondrial DNA deletions. Despite these known diverse causes, in a substantial portion of CSA cases a presumed genetic defect remains unknown.


Blood | 2014

Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD)

Pranesh Chakraborty; Klaus Schmitz-Abe; Erin K. Kennedy; Hapsatou Mamady; Turaya Naas; Danielle Durie; Dean R. Campagna; Ashley Lau; Anoop K. Sendamarai; Daniel H. Wiseman; Alison May; Stephen Jolles; Philip Connor; Colin Powell; Matthew M. Heeney; Patricia-Jane Giardina; Robert J. Klaassen; Caroline Kannengiesser; Isabelle Thuret; Alexis A. Thompson; Laura Marques; Stephen Hughes; Denise Bonney; Sylvia S. Bottomley; Robert Wynn; Ronald M. Laxer; Caterina P. Minniti; John Moppett; Victoria Bordon; Michael T. Geraghty

Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy.


Molecular and Cellular Biology | 2008

Primary Ciliary Dyskinesia in Mice Lacking the Novel Ciliary Protein Pcdp1

Lance Lee; Dean R. Campagna; Jack L. Pinkus; Howard Mulhern; Todd A. Wyatt; Joseph H. Sisson; Jacqueline A. Pavlik; Geraldine S. Pinkus; Mark D. Fleming

ABSTRACT Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.


Blood | 2009

Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism

Teresa Lambe; Robert J. Simpson; Sara Dawson; Tiphaine Bouriez-Jones; Tanya L. Crockford; Michelle Lepherd; Gladys O. Latunde-Dada; Hannah Robinson; Kishor B. Raja; Dean R. Campagna; Guadalupe Villarreal; J. Clive Ellory; Christopher C. Goodnow; Mark D. Fleming; Andrew T. McKie; Richard J. Cornall

Hereditary forms of iron-deficiency anemia, including animal models, have taught us much about the normal physiologic control of iron metabolism. However, the discovery of new informative mutants is limited by the natural mutation frequency. To address this limitation, we have developed a screen for heritable abnormalities of red blood cell morphology in mice with single-nucleotide changes induced by the chemical mutagen ethylnitrosourea (ENU). We now describe the first strain, fragile-red, with hypochromic microcytic anemia resulting from a Y228H substitution in the ferrireductase Steap3 (Steap3(Y288H)). Analysis of the Steap3(Y288H) mutant identifies a conserved motif required for targeting Steap3 to internal compartments and highlights how phenotypic screens linked to mutagenesis can identify new functional variants in erythropoiesis and ascribe function to previously unidentified motifs.


Nature Genetics | 2007

Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice

Fudi Wang; Prasad N. Paradkar; Angel O. Custodio; Diane M. Ward; Mark D. Fleming; Dean R. Campagna; Kristina A. Roberts; Victor L. Boyartchuk; William F. Dietrich; Jerry Kaplan; Nancy C. Andrews

We undertook a quantitative trait locus (QTL) analysis in mice to identify modifier genes that might influence the severity of human iron disorders. We identified a strong QTL on mouse chromosome 9 that differentially affected macrophage iron burden in C57BL/10J and SWR/J mice. A C57BL/10J missense allele of an evolutionarily conserved gene, Mon1a, cosegregated with the QTL in congenic mouse lines. We present evidence that Mon1a is involved in trafficking of ferroportin, the major mammalian iron exporter, to the surface of iron-recycling macrophages. Differences in amounts of surface ferroportin correlate with differences in cellular iron content. Mon1a is also important for trafficking of cell-surface and secreted molecules unrelated to iron metabolism, suggesting that it has a fundamental role in the mammalian secretory apparatus.


Nature | 2012

Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt tq209). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe–2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe–2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe–2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.

Collaboration


Dive into the Dean R. Campagna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Schmitz-Abe

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Schmidt

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge