Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deanne H. Hryciw is active.

Publication


Featured researches published by Deanne H. Hryciw.


Journal of Biological Chemistry | 2004

Nedd4-2 Functionally Interacts with ClC-5 INVOLVEMENT IN CONSTITUTIVE ALBUMIN ENDOCYTOSIS IN PROXIMAL TUBULE CELLS

Deanne H. Hryciw; Jenny Ekberg; Aven Lee; Ingrid L. Lensink; Sharad Kumar; William B. Guggino; David I. Cook; Carol A. Pollock; Philip Poronnik

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl– channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 μg/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 μg/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.


Journal of Biological Chemistry | 2003

Cofilin Interacts with ClC-5 and Regulates Albumin Uptake in Proximal Tubule Cell Lines

Deanne H. Hryciw; Yinghong Wang; Olivier Devuyst; Carol A. Pollock; Philip Poronnik; William B. Guggino

Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dents disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.


American Journal of Physiology-renal Physiology | 2013

Adipokines as a link between obesity and chronic kidney disease

Jessica F. Briffa; Andrew J. McAinch; Philip Poronnik; Deanne H. Hryciw

Adipocytes secrete a number of bioactive adipokines that activate a variety of cell signaling pathways in central and peripheral tissues. Obesity is associated with the altered production of many adipokines and is linked to a number of pathologies. As an increase in body weight is directly associated with an increased risk for developing chronic kidney disease (CKD), there is significant interest in the link between obesity and renal dysfunction. Altered levels of the adipokines leptin, adiponectin, resistin, and visfatin can decrease the glomerular filtration rate and increase albuminuria, which are pathophysiological changes typical of CKD. Specifically, exposure of the glomerulus to altered adipokine levels can increase its permeability, fuse the podocytes, and cause mesangial cell hypertrophy, all of which alter the glomerular filtration rate. In addition, the adipokines leptin and adiponectin can act on tubular networks. Thus, adipokines can act on multiple cell types in the development of renal pathophysiology. Importantly, most studies have been performed using in vitro models, with future studies in vivo required to further elucidate the specific roles that adipokines play in the development and progression of CKD.


Journal of Biological Chemistry | 2006

Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds INTERACTION OF Na+-H+ EXCHANGE REGULATORY FACTOR-2 WITH ClC-5

Deanne H. Hryciw; Jenny Ekberg; Charles Ferguson; Aven Lee; Dongsheng Wang; Robert G. Parton; Carol A. Pollock; C. Chris Yun; Philip Poronnik

The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl– channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney (OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.


Cellular Physiology and Biochemistry | 2011

Diet-induced Obesity Up-regulates the Abundance of GPR43 and GPR120 in a Tissue Specific Manner

Lauren M. Cornall; Michael L. Mathai; Deanne H. Hryciw; Andrew J. McAinch

Background/Aims: GPR43 and GPR120 have recently been deorphanised as receptors for fatty acids. Fatty acids mediate a variety of metabolic processes in the body, however, the effect these receptors have on metabolism is not fully understood. Here, we characterise the effect of diet-induced obesity on the expression of GPR43 and GPR120 in tissues important in maintaining metabolic health. Methods: Six-week old male Sprague Dawley rats were fed either a high fat diet (HFD; 22% fat) or control diet (5% fat; n = 8-9/group) for 12 weeks. Rats were euthanized and the heart, liver, soleus and extensor digitorum longus (EDL) skeletal muscles were excised. GPR43 and GPR120 receptor abundance was quantified by ‘real-time’ PCR. Results: GPR43 mRNA abundance was significantly up-regulated by a HFD in liver and soleus and EDL skeletal muscles compared to control (p ≤ 0.05). Whilst a HFD significantly up-regulated GPR120 gene transcripts in cardiac tissue and EDL skeletal muscle when compare to control (p ≤ 0.05). Conclusion: We have shown for the first time that up-regulation of GPR43 and GPR120 in response to a HFD, is tissue specific. This suggests these receptors have different roles in mediating metabolic function in a number of tissues in the human body.


Clinical and Experimental Pharmacology and Physiology | 2000

Cystic Fibrosis Transmembrane Conductance Regulator And The Outwardly Rectifying Chloride Channel: A Relationship Between Two Chloride Channels Expressed In Epithelial Cells

Deanne H. Hryciw; William B. Guggino

1. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) result in the primary defect observed in patients with cystic fibrosis.


Neuroscience Letters | 2005

A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.

Wade A. Kruger; Daniel Gilbert; Rebecca L. Hawthorne; Deanne H. Hryciw; Stephan Frings; Philip Poronnik; Joseph W. Lynch

There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an external I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels.


International Journal of Endocrinology | 2013

Fatty acid modulation of the endocannabinoid system and the effect on food intake and metabolism

Shaan Naughton; Michael L. Mathai; Deanne H. Hryciw; Andrew J. McAinch

Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the systems role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β-oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.


Clinical and Experimental Pharmacology and Physiology | 2004

Molecular changes in proximal tubule function in diabetes mellitus

Deanne H. Hryciw; Erwin M. Lee; Carol A. Pollock; Philip Poronnik

1. Diabetic kidney disease is initially associated with hypertension and increased urinary albumin excretion. The hypertension is mediated by enhanced volume expansion due to enhanced salt and water retention by the kidney. The increased urinary albumin is not only due to increased glomerular leak, but also to a decrease in albumin reabsorption by the proximal tubule. The precise molecular mechanisms underlying these two phenomena and whether there is any link between the increase in Na+ retention and proteinuria remain unresolved.


Glia | 2007

Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST

Aven Lee; Andrew Rayfield; Deanne H. Hryciw; Theingi Aung Ma; Dongsheng Wang; David V. Pow; Stefan Bröer; C. Chris Yun; Philip Poronnik

Glutamate is a key neurotransmitter and its levels in the synaptic cleft are tightly regulated by reuptake mechanisms that primarily involve transporters in astrocytes. This requires that the glutamate transporters be spatially constrained to effect maximum glutamate transport. GLAST (EAAT1) is the predominant astroglial transporter and contains a class I PDZ‐binding consensus (ETKM) in its C‐terminus. The epithelial Na+/H+ exchanger regulatory factors NHERF1 and NHERF2 are PDZ proteins that contain two tandem PDZ domains and a C‐terminal domain that binds members of the ERM (ezrin–radixin–moesin) family of membrane‐cytoskeletal adaptors. NHERF proteins have been extensively characterized in renal epithelia and their expression in brain has recently been reported; however, their function in the brain remains unknown. The aims of the current study were to (1) determine the distribution of NHERF1/2 in the rodent brain and (2) investigate whether GLAST was a physiological ligand for NHERF1/2. Immunohistochemistry revealed that NHERF1 expression was widespread in rat brain (abundant in cerebellum, cerebral cortex, hippocampus, and thalamus) and primarily restricted to astrocytes whereas NHERF2 expression was primarily restricted to endothelial cells of blood vessels and capillaries. Importantly, NHERF1 distribution closely matched that of GLAST and confocal imaging demonstrated co‐localization of the two proteins. Co‐immunoprecipitation demonstrated that GLAST, NHERF1, and ezrin associate in vivo. In vitro binding assays showed that GLAST bound directly to the PDZ1 domain of NHERF1 via the C‐terminal ETKM motif of GLAST. These findings implicate the GLAST–NHERF1 complex in the regulation of glutamate homeostasis in astrocytes.

Collaboration


Dive into the Deanne H. Hryciw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aven Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Carol A. Pollock

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge