Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debanjan Dhar is active.

Publication


Featured researches published by Debanjan Dhar.


Cancer Cell | 2014

ER Stress Cooperates with Hypernutrition to Trigger TNF-Dependent Spontaneous HCC Development

Hayato Nakagawa; Atsushi Umemura; Koji Taniguchi; Joan Font-Burgada; Debanjan Dhar; Hisanobu Ogata; Zhenyu Zhong; Mark A. Valasek; Ekihiro Seki; Juan Hidalgo; Kazuhiko Koike; Randal J. Kaufman; Michael Karin

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of viral hepatitis, insulin resistance, hepatosteatosis, and nonalcoholic steatohepatitis (NASH), disorders that increase risk of hepatocellular carcinoma (HCC). To determine whether and how ER stress contributes to obesity-driven hepatic tumorigenesis we fed wild-type (WT) and MUP-uPA mice, in which hepatocyte ER stress is induced by plasminogen activator expression, with high-fat diet. Although both strains were equally insulin resistant, the MUP-uPA mice exhibited more liver damage, more immune infiltration, and increased lipogenesis and, as a result, displayed classical NASH signs and developed typical steatohepatitic HCC. Both NASH and HCC development were dependent on TNF produced by inflammatory macrophages that accumulate in the MUP-uPA liver in response to hepatocyte ER stress.


Nature | 2015

Immunosuppressive plasma cells impede T cell-dependent immunogenic chemotherapy

Shabnam Shalapour; Joan Font-Burgada; Giuseppe Di Caro; Zhenyu Zhong; Elsa Sánchez-López; Debanjan Dhar; Gerald Willimsky; Massimo Ammirante; Amy Strasner; Donna E. Hansel; Christina Jamieson; Christopher J. Kane; Tobias Klatte; Peter Birner; Lukas Kenner; Michael Karin

Cancer-associated genetic alterations induce expression of tumour antigens that can activate CD8+ cytotoxic T cells (CTLs), but the microenvironment of established tumours promotes immune tolerance through poorly understood mechanisms. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumour-directed CTLs and are effective in some human cancers. Immune mechanisms also affect treatment outcome, and certain chemotherapeutic drugs stimulate cancer-specific immune responses by inducing immunogenic cell death and other effector mechanisms. Our previous studies revealed that B cells recruited by the chemokine CXCL13 into prostate cancer tumours promote the progression of castrate-resistant prostate cancer by producing lymphotoxin, which activates an IκB kinase α (IKKα)-BMI1 module in prostate cancer stem cells. Because castrate-resistant prostate cancer is refractory to most therapies, we examined B cell involvement in the acquisition of chemotherapy resistance. Here we focus on oxaliplatin, an immunogenic chemotherapeutic agent that is effective in aggressive prostate cancer. We show that mouse B cells modulate the response to low-dose oxaliplatin, which promotes tumour-directed CTL activation by inducing immunogenic cell death. Three different mouse prostate cancer models were refractory to oxaliplatin unless genetically or pharmacologically depleted of B cells. The crucial immunosuppressive B cells are plasmocytes that express IgA, interleukin (IL)-10 and programmed death ligand 1 (PD-L1), the appearance of which depends on TGFβ receptor signalling. Elimination of these cells, which also infiltrate human-therapy-resistant prostate cancer, allows CTL-dependent eradication of oxaliplatin-treated tumours.


Molecular Cell | 2012

IKKα Activation of NOTCH Links Tumorigenesis via FOXA2 Suppression

Mo Liu; Dung Fang Lee; Chun Te Chen; Chia Jui Yen; Long Yuan Li; Hong Jen Lee; Chun-Ju Chang; Wei Chao Chang; Jung Mao Hsu; Hsu Ping Kuo; Weiya Xia; Yongkun Wei; Pei Chun Chiu; Chao Kai Chou; Yi Du; Debanjan Dhar; Michael Karin; Chung-Hsuan Chen; Mien Chie Hung

Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis

Hayato Nakagawa; Yohko Hikiba; Yoshihiro Hirata; Joan Font-Burgada; Kei Sakamoto; Yoku Hayakawa; Koji Taniguchi; Atsushi Umemura; Hiroto Kinoshita; Kosuke Sakitani; Yuji Nishikawa; Kenji Hirano; Tsuneo Ikenoue; Hideaki Ijichi; Debanjan Dhar; Wataru Shibata; Masao Akanuma; Kazuhiko Koike; Michael Karin; Shin Maeda

Significance The precise roles of E-cadherin in the liver and liver carcinogenesis are still unknown. Here we show that mice lacking E-cadherin in the liver develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction, and dysregulated E-cadherin expression was also seen in patients with primary sclerosing cholangitis. E-cadherin loss also significantly accelerates genetically and chemically engineered liver cancer through epithelial–mesenchymal transition, up-regulation of stem cell markers, and ERK activation. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver. E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial–mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial–mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.


Nature | 2017

Inflammation-induced IgA + cells dismantle anti-liver cancer immunity

Shabnam Shalapour; Xue-Jia Lin; Ingmar N. Bastian; John G. Brain; Alastair D. Burt; Alexander A. Aksenov; Alison Vrbanac; Weihua Li; Andres Perkins; Takaji Matsutani; Zhenyu Zhong; Debanjan Dhar; Jose A. Navas-Molina; Jun Xu; Rohit Loomba; Michael Downes; Ruth T. Yu; Ronald M. Evans; Pieter C. Dorrestein; Rob Knight; Christopher Benner; Quentin M. Anstee; Michael Karin

The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA+) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8+ T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8+ T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA+ cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8+ T-lymphocyte activation as a tumour-promoting mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2017

DNA methylation markers for diagnosis and prognosis of common cancers

Xiaoke Hao; Huiyan Luo; Michal Krawczyk; Wei Wei; Wenqiu Wang; Juan Wang; Ken Flagg; Jiayi Hou; Heng Zhang; Shaohua Yi; Maryam Jafari; Danni Lin; Christopher Chung; Bennett A. Caughey; Gen Li; Debanjan Dhar; William Shi; Lianghong Zheng; Rui Hou; Jie Zhu; Liang Zhao; Xin Fu; Edward Zhang; Charlotte Zhang; Jian-Kang Zhu; Michael Karin; Rui-hua Xu; Kang Zhang

Significance The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving diagnosis and prognosis. We evaluated the utility of DNA methylation profiles for differentiating tumors and normal tissues for four common cancers (lung, breast, colon, and liver) and found that they could differentiate cancerous tissue from normal tissue with >95% accuracy. This signature also correctly identified 19 of 20 breast cancer metastases and 29 of 30 colorectal cancer metastases to the liver. We report that methylation patterns can predict the prognosis and survival, with good correlation between differential methylation of CpG sites and expression of cancer-associated genes. Their findings demonstrate the utility of methylation biomarkers for the molecular characterization, diagnosis, and prognosis of cancer. The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis.


Carcinogenesis | 2016

Liver carcinogenesis: from naughty chemicals to soothing fat and the surprising role of NRF2

Michael Karin; Debanjan Dhar

The liver is a key metabolic organ that is essential for production of blood proteins, lipid and sugar metabolism and detoxification of naturally occurring and foreign harmful chemicals. To maintain its mass and many essential functions, the liver possesses remarkable regenerative capacity, but the latter also renders it highly susceptible to carcinogenesis. In fact, liver cancer often develops in the context of chronic liver injury. Currently, primary liver cancer is the second leading cause of cancer-related deaths, and as the rates of other cancers have been declining, the incidence of liver cancer continues to rise with an alarming rate. Although much remains to be accomplished in regards to liver cancer therapy, we have learned a great deal about the molecular etiology of the most common form of primary liver cancer, hepatocellular carcinoma (HCC). Much of this knowledge has been obtained from studies of mouse models, using either toxic chemicals, a combination of fatty foods and endoplasmic reticulum stress or chronic activation of specific metabolic pathways. Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.


Cell Metabolism | 2014

NCOA5, IL-6, type 2 diabetes, and HCC: The deadly quartet.

Debanjan Dhar; Ekihiro Seki; Michael Karin

Although type 2 diabetes (T2D) is an established risk factor for hepatocellular carcinoma (HCC), the underlying mechanism that connects these two diseases is unknown. Gao et al. (2013) now suggest that nuclear receptor coactivator 5 (NCOA5) provides a genetic link between the two diseases through its effects on hepatic IL-6 expression.


Cell | 2018

ER Stress Drives Lipogenesis and Steatohepatitis via Caspase-2 Activation of S1P.

Ju Youn Kim; Ricard Garcia-Carbonell; Shinichiro Yamachika; Peng Zhao; Debanjan Dhar; Rohit Loomba; Randal J. Kaufman; Alan R. Saltiel; Michael Karin

Nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) in response to elevated endoplasmic reticulum (ER) stress. Whereas the onset of simple steatosis requires elevated de novo lipogenesis, progression to NASH is triggered by accumulation of hepatocyte-free cholesterol. We now show that caspase-2, whose expression is ER-stress inducible and elevated in human and mouse NASH, controls the buildup of hepatic-free cholesterol and triglycerides by activating sterol regulatory element-binding proteins (SREBP) in a manner refractory to feedback inhibition. Caspase-2 colocalizes with site 1 protease (S1P) and cleaves it to generate a soluble active fragment that initiates SCAP-independent SREBP1/2 activation in the ER. Caspase-2 ablation or pharmacological inhibition prevents diet-induced steatosis and NASH progression in ER-stress-prone mice. Caspase-2 inhibition offers a specific and effective strategy for preventing or treating stress-driven fatty liver diseases, whereas caspase-2-generated S1P proteolytic fragments, which enter the secretory pathway, are potential NASH biomarkers.


Nature | 2017

Erratum: Inflammation-induced IgA + cells dismantle anti-liver cancer immunity

Shabnam Shalapour; Xue-Jia Lin; Ingmar N. Bastian; John G. Brain; Alastair D. Burt; Alexander A. Aksenov; Alison Vrbanac; Weihua Li; Andres Perkins; Takaji Matsutani; Zhenyu Zhong; Debanjan Dhar; Jose A. Navas-Molina; Jun Xu; Rohit Loomba; Michael Downes; Ruth T. Yu; Ronald M. Evans; Pieter C. Dorrestein; Rob Knight; Christopher Benner; Quentin M. Anstee; Michael Karin

This corrects the article DOI: 10.1038/nature24302

Collaboration


Dive into the Debanjan Dhar's collaboration.

Top Co-Authors

Avatar

Michael Karin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenyu Zhong

University of California

View shared research outputs
Top Co-Authors

Avatar

Ekihiro Seki

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Loomba

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Vrbanac

University of California

View shared research outputs
Top Co-Authors

Avatar

Andres Perkins

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge