Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debashish Bhattacharya is active.

Publication


Featured researches published by Debashish Bhattacharya.


Science | 2009

Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas.

Alexandra Z. Worden; Jae-Hyeok Lee; Thomas Mock; Pierre Rouzé; Melinda P. Simmons; Andrea Aerts; Andrew E. Allen; Marie L. Cuvelier; Evelyne Derelle; Meredith V. Everett; Elodie Foulon; Jane Grimwood; Heidrun Gundlach; Bernard Henrissat; Carolyn A. Napoli; Sarah M. McDonald; Micaela S. Parker; Stephane Rombauts; Aasf Salamov; Peter von Dassow; Jonathan H. Badger; Pedro M. Coutinho; Elif Demir; Inna Dubchak; Chelle Gentemann; Wenche Eikrem; Jill E. Gready; Uwe John; William Lanier; Erika Lindquist

Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The single, ancient origin of chromist plastids

Hwan Su Yoon; Jeremiah D. Hackett; Gabriele Pinto; Debashish Bhattacharya

Algae include a diverse array of photosynthetic eukaryotes excluding land plants. Explaining the origin of algal plastids continues to be a major challenge in evolutionary biology. Current knowledge suggests that plastid primary endosymbiosis, in which a single-celled protist engulfs and “enslaves” a cyanobacterium, likely occurred once and resulted in the primordial alga. This eukaryote then gave rise through vertical evolution to the red, green, and glaucophyte algae. However, some modern algal lineages have a more complicated evolutionary history involving a secondary endosymbiotic event, in which a protist engulfed an existing eukaryotic alga (rather than a cyanobacterium), which was then reduced to a secondary plastid. Secondary endosymbiosis explains the majority of algal biodiversity, yet the number and timing of these events is unresolved. Here we analyzed a five-gene plastid data set to show that a taxonomically diverse group of chlorophyll c2-containing protists comprising cryptophyte, haptophyte, and stramenopiles algae (Chromista) share a common plastid that most likely arose from a single, ancient (≈1,260 million years ago) secondary endosymbiosis involving a red alga. This finding is consistent with Chromista monophyly and implicates secondary endosymbiosis as an important force in generating eukaryotic biodiversity.


Science | 2009

Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms

Ahmed Moustafa; Bank Beszteri; Uwe G. Maier; Chris Bowler; Klaus Valentin; Debashish Bhattacharya

Green for Diatoms Diatoms account for 20% of global carbon fixation and, together with other chromalveolates (e.g., dinoflagellates and coccolithophorids), represent many thousands of eukaryote taxa in the worlds oceans and on the tree of life. Moustafa et al. (p. 1724; see the Perspective by Dagan and Martin) have discovered that the genomes of diatoms are highly chimeric, with about 10% of their nuclear genes being of foreign algal origin. Of this set of 1272 algal genes, 253 were, as expected, from a distant red algal secondary endosymbiont, but more than 1000 of the genes were derived from green algae and predated the red algal relationship. These protist taxa are important not only for genetic and genomic investigations but also for their potential in biofuel and nanotechnology applications and in global primary productivity in relation to climate change. The genomes of early plant representatives are composites, with a substantial number of foreign genes from red and green algae. Diatoms and other chromalveolates are among the dominant phytoplankters in the world’s oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the “green” contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich protist lineage.


American Journal of Botany | 2004

Dinoflagellates: a remarkable evolutionary experiment.

Jeremiah D. Hackett; Donald M. Anderson; Deana L. Erdner; Debashish Bhattacharya

In this paper, we focus on dinoflagellate ecology, toxin production, fossil record, and a molecular phylogenetic analysis of hosts and plastids. Of ecological interest are the swimming and feeding behavior, bioluminescence, and symbioses of dinoflagellates with corals. The many varieties of dinoflagellate toxins, their biological effects, and current knowledge of their origin are discussed. Knowledge of dinoflagellate evolution is aided by a rich fossil record that can be used to document their emergence and diversification. However, recent biogeochemical studies indicate that dinoflagellates may be much older than previously believed. A remarkable feature of dinoflagellates is their unique genome structure and gene regulation. The nuclear genomes of these algae are of enormous size, lack nucleosomes, and have permanently condensed chromosomes. This chapter reviews the current knowledge of gene regulation and transcription in dinoflagellates with regard to the unique aspects of the nuclear genome. Previous work shows the plastid genome of typical dinoflagellates to have been reduced to single-gene minicircles that encode only a small number of proteins. Recent studies have demonstrated that the majority of the plastid genome has been transferred to the nucleus, which makes the dinoflagellates the only eukaryotes to encode the majority of typical plastid genes in the nucleus. The evolution of the dinoflagellate plastid and the implications of these results for understanding organellar genome evolution are discussed.


Science | 2012

Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants

Dana C. Price; Cheong Xin Chan; Hwan Su Yoon; Eun Chan Yang; Huan Qiu; Andreas P. M. Weber; Rainer Schwacke; Jeferson Gross; Nicolas A. Blouin; Chris E. Lane; Adrian Reyes-Prieto; Dion G. Durnford; Jonathan A.D. Neilson; B. Franz Lang; Gertraud Burger; Jürgen M. Steiner; Wolfgang Löffelhardt; Jonathan E. Meuser; Matthew C. Posewitz; Steven G. Ball; Maria Cecilia Arias; Bernard Henrissat; Pedro M. Coutinho; Stefan A. Rensing; Aikaterini Symeonidi; Harshavardhan Doddapaneni; Beverley R. Green; Veeran D. Rajah; Jeffrey L. Boore; Debashish Bhattacharya

Plastid Origins The glaucophytes, represented by the alga Cyanophora paradoxa, are the putative sister group of red and green algae and plants, which together comprise the founding group of photosynthetic eukaryotes, the Plantae. In their analysis of the genome of C. paradoxa, Price et al. (p. 843; see the Perspective by Spiegel) demonstrate a unique origin for the plastid in the ancestor of this supergroup, which retains much of the ancestral diversity in genes involved in carbohydrate metabolism and fermentation, as well as in the gene content of the mitochondrial genome. Moreover, about 3.3% of nuclear genes in C. paradoxa seem to carry a signal of cyanobacterial ancestry, and key genes involved in starch biosynthesis are derived from energy parasites such as Chlamydiae. Rapid radiation, reticulate evolution via horizontal gene transfer, high rates of gene divergence, loss, and replacement, may have diffused the evolutionary signals within this supergroup, which perhaps explains previous difficulties in resolving its evolutionary history. An ancient algal genome suggests a unique origin of the plastid in the ancestor to plants, algae, and glaucophytes. The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis

Hwan Su Yoon; Jeremiah D. Hackett; Debashish Bhattacharya

The most widely distributed dinoflagellate plastid contains chlorophyll c2 and peridinin as the major carotenoid. A second plastid type, found in taxa such as Karlodinium micrum and Karenia spp., contains chlorophylls c1 + c2 and 19′-hexanoyloxy-fucoxanthin and/or 19′-butanoyloxy-fucoxanthin but lacks peridinin. Because the presence of chlorophylls c1 + c2 and fucoxanthin is typical of haptophyte algae, the second plastid type is believed to have originated from a haptophyte tertiary endosymbiosis in an ancestral peridinin-containing dinoflagellate. This hypothesis has, however, never been thoroughly tested in plastid trees that contain genes from both peridinin- and fucoxanthin-containing dinoflagellates. To address this issue, we sequenced the plastid-encoded psaA (photosystem I P700 chlorophyll a apoprotein A1), psbA (photosystem II reaction center protein D1), and “Form I” rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) genes from various red and dinoflagellate algae. The combined psaA + psbA tree shows significant support for the monophyly of peridinin- and fucoxanthin-containing dinoflagellates as sister to the haptophytes. The monophyly with haptophytes is robustly recovered in the psbA phylogeny in which we increased the sampling of dinoflagellates to 14 species. As expected from previous analyses, the fucoxanthin-containing dinoflagellates formed a well-supported sister group with haptophytes in the rbcL tree. Based on these analyses, we postulate that the plastid of peridinin- and fucoxanthin-containing dinoflagellates originated from a haptophyte tertiary endosymbiosis that occurred before the split of these lineages. Our findings imply that the presence of chlorophylls c1 + c2 and fucoxanthin, and the Form I rbcL gene are in fact the primitive (not derived, as widely believed) condition in dinoflagellates.


Journal of Phycology | 2006

DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1

Hwan Su Yoon; Kirsten M. Müller; Robert G. Sheath; Franklyn D. Ott; Debashish Bhattacharya

Previous phylogenetic studies of the Rhodophyta have provided a framework for understanding red algal phylogeny, but there still exists the need for a comprehensive analysis using a broad sampling of taxa and sufficient phylogenetic information to clearly define the major lineages. In this study, we determined 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding regions and established a robust red algal phylogeny to identify the major clades. The tree included most of the lineages of the Bangiophyceae (25 genera, 48 taxa). Seven well‐supported lineages were identified with this analysis with the Cyanidiales having the earliest divergence and being distinct from the remaining taxa; i.e. the Porphyridiales 1–3, Bangiales, Florideophyceae, and Compsopogonales. We also analyzed data sets with fewer taxa but using seven proteins or the DNA sequence from nine genes to resolve inter‐clade relationships. Based on all of these analyses, we propose that the Rhodophyta contains two new subphyla, the Cyanidiophytina with a single class, the Cyanidiophyceae, and the Rhodophytina with six classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Porphyridiophyceae classis nov. (which contains Porphyridium, Flintiella, and Erythrolobus), Rhodellophyceae, and Stylonematophyceae classis nov. (which contains Stylonema, Bangiopsis, Chroodactylon, Chroothece, Purpureofilum, Rhodosorus, Rhodospora, and Rufusia). We also describe a new order, Rhodellales, and a new family, Rhodellaceae (with Rhodella, Dixoniella, and Glaucosphaera).


Science | 2011

Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists

Hwan Su Yoon; Dana C. Price; Ramunas Stepanauskas; Veeran D. Rajah; Michael E. Sieracki; William H. Wilson; Eun Chan Yang; Siobain Duffy; Debashish Bhattacharya

Marine protist cells from the wild environment contain DNA from several viruses and bacteria, but apparently lack plastids. Whole-genome shotgun sequence data from three individual cells isolated from seawater, followed by analysis of ribosomal DNA, indicated that the cells represented three divergent clades of picobiliphytes. In contrast with the recent description of this phylum, we found no evidence of plastid DNA nor of nuclear-encoded plastid-targeted proteins, which suggests that these picobiliphytes are heterotrophs. Genome data from one cell were dominated by sequences from a widespread single-stranded DNA virus. This virus was absent from the other two cells, both of which contained non-eukaryote DNA derived from marine Bacteroidetes and large DNA viruses. By using shotgun sequencing of uncultured marine picobiliphytes, we revealed the distinct interactions of individual cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica

Mary E. Rumpho; Jared M. Worful; Jungho Lee; Krishna Kannan; Mary S. Tyler; Debashish Bhattacharya; Ahmed A. Moustafa; James R. Manhart

The sea slug Elysia chlorotica acquires plastids by ingestion of its algal food source Vaucheria litorea. Organelles are sequestered in the molluscs digestive epithelium, where they photosynthesize for months in the absence of algal nucleocytoplasm. This is perplexing because plastid metabolism depends on the nuclear genome for >90% of the needed proteins. Two possible explanations for the persistence of photosynthesis in the sea slug are (i) the ability of V. litorea plastids to retain genetic autonomy and/or (ii) more likely, the mollusc provides the essential plastid proteins. Under the latter scenario, genes supporting photosynthesis have been acquired by the animal via horizontal gene transfer and the encoded proteins are retargeted to the plastid. We sequenced the plastid genome and confirmed that it lacks the full complement of genes required for photosynthesis. In support of the second scenario, we demonstrated that a nuclear gene of oxygenic photosynthesis, psbO, is expressed in the sea slug and has integrated into the germline. The source of psbO in the sea slug is V. litorea because this sequence is identical from the predator and prey genomes. Evidence that the transferred gene has integrated into sea slug nuclear DNA comes from the finding of a highly diverged psbO 3′ flanking sequence in the algal and mollusc nuclear homologues and gene absence from the mitochondrial genome of E. chlorotica. We demonstrate that foreign organelle retention generates metabolic novelty (“green animals”) and is explained by anastomosis of distinct branches of the tree of life driven by predation and horizontal gene transfer.


PLOS Genetics | 2005

Evaluating support for the current classification of eukaryotic diversity.

Laura Wegener Parfrey; Erika Barbero; Elyse Lasser; Micah Dunthorn; Debashish Bhattacharya; David J. Patterson; Laura A. Katz

Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life.

Collaboration


Dive into the Debashish Bhattacharya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Chan Yang

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeferson Gross

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

Adrian Reyes-Prieto

Canadian Institute for Advanced Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge