Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremiah D. Hackett is active.

Publication


Featured researches published by Jeremiah D. Hackett.


Nature | 2001

Genome sequence of enterohaemorrhagic Escherichia coli O157:H7

Nicole T. Perna; Guy Plunkett; Valerie Burland; Bob Mau; Jeremy D. Glasner; Debra J. Rose; George F. Mayhew; Peter S. Evans; Jason Gregor; Heather A. Kirkpatrick; György Pósfai; Jeremiah D. Hackett; Sara Klink; Adam Boutin; Ying Shao; Leslie Miller; Erik J. Grotbeck; N. Wayne Davis; Alex Lim; Eileen T. Dimalanta; Konstantinos Potamousis; Jennifer Apodaca; Thomas S. Anantharaman; Jieyi Lin; Galex Yen; David C. Schwartz; Rodney A. Welch; Frederick R. Blattner

The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions—all of which could be targets for surveillance.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli

Rodney A. Welch; Valerie Burland; Guy Plunkett; Peter Redford; Paula L. Roesch; David A. Rasko; Eric L. Buckles; S. R. Liou; Adam Boutin; Jeremiah D. Hackett; D. Stroud; George F. Mayhew; Debra J. Rose; Shiguo Zhou; David C. Schwartz; Nicole T. Perna; Harry L. T. Mobley; Michael S. Donnenberg; Frederick R. Blattner

We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The single, ancient origin of chromist plastids

Hwan Su Yoon; Jeremiah D. Hackett; Gabriele Pinto; Debashish Bhattacharya

Algae include a diverse array of photosynthetic eukaryotes excluding land plants. Explaining the origin of algal plastids continues to be a major challenge in evolutionary biology. Current knowledge suggests that plastid primary endosymbiosis, in which a single-celled protist engulfs and “enslaves” a cyanobacterium, likely occurred once and resulted in the primordial alga. This eukaryote then gave rise through vertical evolution to the red, green, and glaucophyte algae. However, some modern algal lineages have a more complicated evolutionary history involving a secondary endosymbiotic event, in which a protist engulfed an existing eukaryotic alga (rather than a cyanobacterium), which was then reduced to a secondary plastid. Secondary endosymbiosis explains the majority of algal biodiversity, yet the number and timing of these events is unresolved. Here we analyzed a five-gene plastid data set to show that a taxonomically diverse group of chlorophyll c2-containing protists comprising cryptophyte, haptophyte, and stramenopiles algae (Chromista) share a common plastid that most likely arose from a single, ancient (≈1,260 million years ago) secondary endosymbiosis involving a red alga. This finding is consistent with Chromista monophyly and implicates secondary endosymbiosis as an important force in generating eukaryotic biodiversity.


American Journal of Botany | 2004

Dinoflagellates: a remarkable evolutionary experiment.

Jeremiah D. Hackett; Donald M. Anderson; Deana L. Erdner; Debashish Bhattacharya

In this paper, we focus on dinoflagellate ecology, toxin production, fossil record, and a molecular phylogenetic analysis of hosts and plastids. Of ecological interest are the swimming and feeding behavior, bioluminescence, and symbioses of dinoflagellates with corals. The many varieties of dinoflagellate toxins, their biological effects, and current knowledge of their origin are discussed. Knowledge of dinoflagellate evolution is aided by a rich fossil record that can be used to document their emergence and diversification. However, recent biogeochemical studies indicate that dinoflagellates may be much older than previously believed. A remarkable feature of dinoflagellates is their unique genome structure and gene regulation. The nuclear genomes of these algae are of enormous size, lack nucleosomes, and have permanently condensed chromosomes. This chapter reviews the current knowledge of gene regulation and transcription in dinoflagellates with regard to the unique aspects of the nuclear genome. Previous work shows the plastid genome of typical dinoflagellates to have been reduced to single-gene minicircles that encode only a small number of proteins. Recent studies have demonstrated that the majority of the plastid genome has been transferred to the nucleus, which makes the dinoflagellates the only eukaryotes to encode the majority of typical plastid genes in the nucleus. The evolution of the dinoflagellate plastid and the implications of these results for understanding organellar genome evolution are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis

Hwan Su Yoon; Jeremiah D. Hackett; Debashish Bhattacharya

The most widely distributed dinoflagellate plastid contains chlorophyll c2 and peridinin as the major carotenoid. A second plastid type, found in taxa such as Karlodinium micrum and Karenia spp., contains chlorophylls c1 + c2 and 19′-hexanoyloxy-fucoxanthin and/or 19′-butanoyloxy-fucoxanthin but lacks peridinin. Because the presence of chlorophylls c1 + c2 and fucoxanthin is typical of haptophyte algae, the second plastid type is believed to have originated from a haptophyte tertiary endosymbiosis in an ancestral peridinin-containing dinoflagellate. This hypothesis has, however, never been thoroughly tested in plastid trees that contain genes from both peridinin- and fucoxanthin-containing dinoflagellates. To address this issue, we sequenced the plastid-encoded psaA (photosystem I P700 chlorophyll a apoprotein A1), psbA (photosystem II reaction center protein D1), and “Form I” rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) genes from various red and dinoflagellate algae. The combined psaA + psbA tree shows significant support for the monophyly of peridinin- and fucoxanthin-containing dinoflagellates as sister to the haptophytes. The monophyly with haptophytes is robustly recovered in the psbA phylogeny in which we increased the sampling of dinoflagellates to 14 species. As expected from previous analyses, the fucoxanthin-containing dinoflagellates formed a well-supported sister group with haptophytes in the rbcL tree. Based on these analyses, we postulate that the plastid of peridinin- and fucoxanthin-containing dinoflagellates originated from a haptophyte tertiary endosymbiosis that occurred before the split of these lineages. Our findings imply that the presence of chlorophylls c1 + c2 and fucoxanthin, and the Form I rbcL gene are in fact the primitive (not derived, as widely believed) condition in dinoflagellates.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Triassic origin and early radiation of multicellular volvocine algae

Matthew D. Herron; Jeremiah D. Hackett; Frank O. Aylward; Richard E. Michod

Evolutionary transitions in individuality (ETIs) underlie the watershed events in the history of life on Earth, including the origins of cells, eukaryotes, plants, animals, and fungi. Each of these events constitutes an increase in the level of complexity, as groups of individuals become individuals in their own right. Among the best-studied ETIs is the origin of multicellularity in the green alga Volvox, a model system for the evolution of multicellularity and cellular differentiation. Since its divergence from unicellular ancestors, Volvox has evolved into a highly integrated multicellular organism with cellular specialization, a complex developmental program, and a high degree of coordination among cells. Remarkably, all of these changes were previously thought to have occurred in the last 50–75 million years. Here we estimate divergence times using a multigene data set with multiple fossil calibrations and use these estimates to infer the times of developmental changes relevant to the evolution of multicellularity. Our results show that Volvox diverged from unicellular ancestors at least 200 million years ago. Two key innovations resulting from an early cycle of cooperation, conflict and conflict mediation led to a rapid integration and radiation of multicellular forms in this group. This is the only ETI for which a detailed timeline has been established, but multilevel selection theory predicts that similar changes must have occurred during other ETIs.


PLOS ONE | 2010

Transcriptome Profiling of a Toxic Dinoflagellate Reveals a Gene-Rich Protist and a Potential Impact on Gene Expression Due to Bacterial Presence

Ahmed M. Moustafa; Andrew N. Evans; David M. Kulis; Jeremiah D. Hackett; Deana L. Erdner; Donald M. Anderson; Debashish Bhattacharya

Background Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earths oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. Methodology/Principal Findings We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value < 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Conclusions/Significance Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a “core” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.


Journal of Phycology | 2003

PHYLOGENETIC EVIDENCE FOR THE CRYPTOPHYTE ORIGIN OF THE PLASTID OF DINOPHYSIS (DINOPHYSIALES, DINOPHYCEAE)1

Jeremiah D. Hackett; Lucie Maranda; Hwan Su Yoon; Debashish Bhattacharya

Photosynthetic members of the genus Dinophysis Ehrenberg contain a plastid of uncertain origin. Ultrastructure and pigment analyses suggest that the two‐membrane‐bound plastid of Dinophysis spp. has been acquired through endosymbiosis from a cryptophyte. However, these organisms do not survive in culture, raising the possibility that Dinophysis spp. have a transient kleptoplast. To test the origin and permanence of the plastid of Dinophysis, we sequenced plastid‐encoded psbA and small subunit rDNA from single‐cell isolates of D. acuminata Claparède et Lachman, D. acuta Ehrenberg, and D. norvegica Claparède et Lachman. Phylogenetic analyses confirm the cryptophyte origin of the plastid. Plastid sequences from different populations isolated at different times are monophyletic with robust support and show limited polymorphism. DNA sequencing also revealed plastid sequences of florideophyte origin, indicating that Dinophysis may be feeding on red algae.


Current Biology | 2006

Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions

Adrian Reyes-Prieto; Jeremiah D. Hackett; Marcelo B. Soares; Maria F. Bonaldo; Debashish Bhattacharya

A single cyanobacterial primary endosymbiosis that occurred approximately 1.5 billion years ago is believed to have given rise to the plastid in the common ancestor of the Plantae or Archaeplastida--the eukaryotic supergroup comprising red, green (including land plants), and glaucophyte algae. Critical to plastid establishment was the transfer of endosymbiont genes to the host nucleus (i.e., endosymbiotic gene transfer [EGT]). It has been postulated that plastid-derived EGT played a significant role in plant nuclear-genome evolution, with 18% (or 4,500) of all nuclear genes in Arabidopsis thaliana having a cyanobacterial origin with about one-half of these recruited for nonplastid functions. Here, we determine whether the level of cyanobacterial gene recruitment proposed for Arabidopsis is of the same magnitude in the algal sisters of plants by analyzing expressed-sequence tag (EST) data from the glaucophyte alga Cyanophora paradoxa. Bioinformatic analysis of 3,576 Cyanophora nuclear genes shows that 10.8% of these with significant database hits are of cyanobacterial origin and one-ninth of these have nonplastid functions. Our data indicate that unlike plants, early-diverging algal groups appear to retain a smaller number of endosymbiont genes in their nucleus, with only a minor proportion of these recruited for nonplastid functions.


Annual Review of Microbiology | 2011

Dinoflagellate Genome Evolution

Jennifer H. Wisecaver; Jeremiah D. Hackett

The dinoflagellates are an ecologically important group of microbial eukaryotes that have evolved many novel genomic characteristics. They possess some of the largest nuclear genomes among eukaryotes arranged on permanently condensed liquid-crystalline chromosomes. Recent advances have revealed the presence of genes arranged in tandem arrays, trans-splicing of messenger RNAs, and a reduced role for transcriptional regulation compared to other eukaryotes. In contrast, the mitochondrial and plastid genomes have the smallest gene content among functional eukaryotic organelles. Dinoflagellate biology and genome evolution have been dramatically influenced by lateral transfer of individual genes and large-scale transfer of genes through endosymbiosis. Next-generation sequencing technologies have only recently made genome-scale analyses of these organisms possible, and these new methods are helping researchers better understand the biology and evolution of this enigmatic group of eukaryotes.

Collaboration


Dive into the Jeremiah D. Hackett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald M. Anderson

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Deana L. Erdner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Pinto

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

David C. Schwartz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Frederick R. Blattner

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Guy Plunkett

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge