Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debashish Ray is active.

Publication


Featured researches published by Debashish Ray.


Nature | 2013

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray; Hilal Kazan; Kate B. Cook; Matthew T. Weirauch; Hamed Shateri Najafabadi; Xiao Li; Serge Gueroussov; Mihai Albu; Hong Zheng; Ally Yang; Hong Na; Manuel Irimia; Leah H. Matzat; Ryan K. Dale; Sarah A. Smith; Christopher A. Yarosh; Seth M. Kelly; Behnam Nabet; D. Mecenas; Weimin Li; Rakesh S. Laishram; Mei Qiao; Howard D. Lipshitz; Fabio Piano; Anita H. Corbett; Russ P. Carstens; Brendan J. Frey; Richard A. Anderson; Kristen W. Lynch; Luiz O. F. Penalva

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Nature Biotechnology | 2009

Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins.

Debashish Ray; Hilal Kazan; Esther T. Chan; Lourdes Peña Castillo; Sidharth Chaudhry; Shaheynoor Talukder; Benjamin J. Blencowe; Quaid Morris; Timothy R. Hughes

Metazoan genomes encode hundreds of RNA-binding proteins (RBPs) but RNA-binding preferences for relatively few RBPs have been well defined. Current techniques for determining RNA targets, including in vitro selection and RNA co-immunoprecipitation, require significant time and labor investment. Here we introduce RNAcompete, a method for the systematic analysis of RNA binding specificities that uses a single binding reaction to determine the relative preferences of RBPs for short RNAs that contain a complete range of k-mers in structured and unstructured RNA contexts. We tested RNAcompete by analyzing nine diverse RBPs (HuR, Vts1, FUSIP1, PTB, U1A, SF2/ASF, SLM2, RBM4 and YB1). RNAcompete identified expected and previously unknown RNA binding preferences. Using in vitro and in vivo binding data, we demonstrate that preferences for individual 7-mers identified by RNAcompete are a more accurate representation of binding activity than are conventional motif models. We anticipate that RNAcompete will be a valuable tool for the study of RNA-protein interactions.


PLOS Computational Biology | 2010

RNAcontext: A New Method for Learning the Sequence and Structure Binding Preferences of RNA-Binding Proteins

Hilal Kazan; Debashish Ray; Esther T. Chan; Timothy R. Hughes; Quaid Morris

Metazoan genomes encode hundreds of RNA-binding proteins (RBPs). These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.


Nucleic Acids Research | 2011

Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays

Mark B. Stead; Sarah Marshburn; Bijoy K. Mohanty; Joydeep Mitra; Lourdes Peňa Castillo; Debashish Ray; Harm van Bakel; Timothy R. Hughes; Sidney R. Kushner

Tiling microarrays have proven to be a valuable tool for gaining insights into the transcriptomes of microbial organisms grown under various nutritional or stress conditions. Here, we describe the use of such an array, constructed at the level of 20 nt resolution for the Escherichia coli MG1655 genome, to observe genome-wide changes in the steady-state RNA levels in mutants defective in either RNase E or RNase III. The array data were validated by comparison to previously published results for a variety of specific transcripts as well as independent northern analysis of additional mRNAs and sRNAs. In the absence of RNase E, 60% of the annotated coding sequences showed either increases or decreases in their steady-state levels. In contrast, only 12% of the coding sequences were affected in the absence of RNase III. Unexpectedly, many coding sequences showed decreased abundance in the RNase E mutant, while more than half of the annotated sRNAs showed changes in abundance. Furthermore, the steady-state levels of many transcripts showed overlapping effects of both ribonucleases. Data are also presented demonstrating how the arrays were used to identify potential new genes, RNase III cleavage sites and the direct or indirect control of specific biological pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes

Ylva Ivarsson; Roland Arnold; Megan McLaughlin; Satra Nim; Rakesh Joshi; Debashish Ray; Bernard A. Liu; Joan Teyra; Tony Pawson; Jason Moffat; Shawn S.-C. Li; Sachdev S. Sidhu; Philip M. Kim

Significance Although knowledge about the human interactome is increasing in coverage because of the development of high-throughput technologies, fundamental gaps remain. In particular, interactions mediated by short linear motifs are of great importance for signaling, but systematic experimental approaches for their detection are missing. We fill this important gap by developing a dedicated approach that combines bioinformatics, custom oligonucleotide arrays and peptide-phage display. We computationally design a library of all possible motifs in a given proteome, print representatives of these on custom oligonucleotide arrays, and identify natural peptide binders for a given protein using phage display. Our approach is scalable and has broad application. Here, we present a proof-of-concept study using both designed human and viral peptide libraries. The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain–SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host–virus protein–protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen–host protein–protein interactions.


Genome Biology | 2015

Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition

John D. Laver; Xiao Li; Debashish Ray; Kate B. Cook; Noah A Hahn; Syed Nabeel-Shah; Mariana Kekis; Hua Luo; Alexander Marsolais; Karen Yy Fung; Timothy R. Hughes; J. Timothy Westwood; Sachdev S. Sidhu; Quaid Morris; Howard D. Lipshitz; Craig A. Smibert

BackgroundBrain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown.ResultsGenome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition.ConclusionsOur results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.


Molecular Cell | 2014

A Pair of RNA-Binding Proteins Controls Networks of Splicing Events Contributing to Specialization of Neural Cell Types

Adam D. Norris; Shangbang Gao; Megan L. Norris; Debashish Ray; Arun K. Ramani; Andrew G. Fraser; Quaid Morris; Timothy R. Hughes; Mei Zhen; John A. Calarco

Alternative splicing is important for the development and function of the nervous system, but little is known about the differences in alternative splicing between distinct types of neurons. Furthermore, the factors that control cell-type-specific splicing and the physiological roles of these alternative isoforms are unclear. By monitoring alternative splicing at single-cell resolution in Caenorhabditis elegans, we demonstrate that splicing patterns in different neurons are often distinct and highly regulated. We identify two conserved RNA-binding proteins, UNC-75/CELF and EXC-7/Hu/ELAV, which regulate overlapping networks of splicing events in GABAergic and cholinergic neurons. We use the UNC-75 exon network to discover regulators of synaptic transmission and to identify unique roles for isoforms of UNC-64/Syntaxin, a protein required for synaptic vesicle fusion. Our results indicate that combinatorial regulation of alternative splicing in distinct neurons provides a mechanism to specialize metazoan nervous systems.


Cell Reports | 2015

The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation

Inga Loedige; Leonhard Jakob; Thomas Treiber; Debashish Ray; Mathias Stotz; Nora Treiber; Janosch Hennig; Kate B. Cook; Quaid Morris; Timothy R. Hughes; Julia C. Engelmann; Michael P. Krahn; Gunter Meister

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


eLife | 2016

Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians

Jordi Solana; Manuel Irimia; Salah Ayoub; Marta Rodriguez Orejuela; Vera Zywitza; Marvin Jens; Javier Tapial; Debashish Ray; Quaid Morris; Timothy R. Hughes; Benjamin J. Blencowe; Nikolaus Rajewsky

In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001


Genome Research | 2014

Identifying mRNA sequence elements for target recognition by human Argonaute proteins

Jingjing Li; Tae-Hyung Kim; Razvan Nutiu; Debashish Ray; Timothy R. Hughes; Zhaolei Zhang

It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO-mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity.

Collaboration


Dive into the Debashish Ray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge