Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn L. Cummins is active.

Publication


Featured researches published by Carolyn L. Cummins.


Cell | 2006

Identification of Ligands for DAF-12 that Govern Dauer Formation and Reproduction in C. elegans

Daniel L. Motola; Carolyn L. Cummins; Veerle Rottiers; Kamalesh K. Sharma; Tingting Li; Yong Li; Kelly Suino-Powell; H. Eric Xu; Richard J. Auchus; Adam Antebi; David J. Mangelsdorf

In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.


Nature Medicine | 2007

27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen

Michihisa Umetani; Hideharu Domoto; Andrew K. Gormley; Ivan S. Yuhanna; Carolyn L. Cummins; Norman B. Javitt; Kenneth S. Korach; Philip W. Shaul; David J. Mangelsdorf

The cardioprotective effects of estrogen are mediated by receptors expressed in vascular cells. Here we show that 27-hydroxycholesterol (27HC), an abundant cholesterol metabolite that is elevated with hypercholesterolemia and found in atherosclerotic lesions, is a competitive antagonist of estrogen receptor action in the vasculature. 27HC inhibited both the transcription-mediated and the non-transcription-mediated estrogen-dependent production of nitric oxide by vascular cells, resulting in reduced estrogen-induced vasorelaxation of rat aorta. Furthermore, increasing 27HC levels in mice by diet-induced hypercholesterolemia, pharmacologic administration or genetic manipulation (by knocking out the gene encoding the catabolic enzyme CYP7B1) decreased estrogen-dependent expression of vascular nitric oxide synthase and repressed carotid artery reendothelialization. As well as antiestrogenic effects, there were proestrogenic actions of 27HC that were cell-type specific, indicating that 27HC functions as an endogenous selective estrogen receptor modulator (SERM). Taken together, these studies point to 27HC as a contributing factor in the loss of estrogen protection from vascular disease.


Current protocols in molecular biology | 2006

High-throughput real-time quantitative reverse transcription PCR.

Angie L. Bookout; Carolyn L. Cummins; David J. Mangelsdorf; Jean M. Pesola; Martha F. Kramer

Extensive detail on the application of the real‐time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high‐throughput, 384‐well‐format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real‐time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency‐corrected ΔCt method, and the comparative cycle time, or ΔΔCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT‐PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real‐time and non‐real‐time RT‐PCR applications.


Advanced Drug Delivery Reviews | 2001

The drug efflux–metabolism alliance: biochemical aspects ☆

Leslie Z. Benet; Carolyn L. Cummins

The considerable overlap in the substrate selectivity and tissue localization of CYP3A and P-glycoprotein has led to the hypothesis that this transporter and enzyme pair act as a coordinated absorption barrier against xenobiotics. A historical perspective on the investigation of this interactive alliance is given, starting from the understanding of the role of intestinal metabolism in explaining cyclosporine clinical data. Several animal studies using mdr1a-/- knockout mice have demonstrated P-glycoproteins importance in limiting drug absorption and decreasing bioavailability. Human clinical studies investigating the importance of intestinal CYP3A and P-glycoprotein through inhibition or induction of these proteins have provided further evidence of this interaction. Recent in vitro studies using CYP3A4-expressing Caco-2 cells are reported. These studies reveal that the role of P-glycoprotein in the intestine extends beyond simply limiting parent drug absorption but also includes increasing the access of drug to metabolism by CYP3A through repeated cycles of absorption and efflux.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling

Birgit Gerisch; Veerle Rottiers; Dongling Li; Daniel L. Motola; Carolyn L. Cummins; Hans Lehrach; David J. Mangelsdorf; Adam Antebi

Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is “proaging” in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is “antiaging” in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.


Current Drug Metabolism | 2003

Transporter-Enzyme Interactions: Implications for Predicting Drug-Drug Interactions from In Vitro Data

Leslie Z. Benet; Carolyn L. Cummins; Chi-Yuan Wu

As discussed in earlier articles, predictions of in vivo drug-drug interactions from in vitro studies is a subject of high interest with obvious therapeutic as well as economic benefits. Up until now little attention has been given to the potential interplay between metabolic enzymes and transporters that could confound the in vivo-in vitro relationships. Drug efflux by intestinal P-glycoprotein (P-gp) is known to decrease the bioavailability of many CYP3A4 substrates. We have demonstrated that the interplay between P-gp and CYP3A4 at the apical intestinal membrane can increase the opportunity for drug metabolism by determining bidirectional extraction ratios across CYP3A4 transfected Caco-2 cells for two dual P-gp/CYP3A4 substrates, K77 (an experimental cysteine protease inhibitor) and sirolimus, as well as two negative control, CYP3A4 only substrates, midazolam and felodipine. Studies were carried out under control conditions, with a P-gp inhibitor (GG918) and with a dual inhibitor (cyclosporine). Measurement of intracellular concentration changes is an important component in calculating the extraction ratios. We hypothesize that the inverse orientation of P-gp and CYP3A4 in the liver will result in an opposite interactive effect in that organ. In vivo rat intestinal perfusion studies with K77 and rat liver perfusion studies with tacrolimus under control conditions and with inhibitors of CYP3A4 (troleandomycin), P-gp (GG918) and both CYP3A4/P-gp (cyclosporine) lend support to our hypotheses. These results serve as a template for predicting enzyme- transporter (both absorptive and efflux) interactions in the intestine and the liver.


Journal of Clinical Investigation | 2006

Liver X receptors regulate adrenal cholesterol balance

Carolyn L. Cummins; David H. Volle; Yuan Zhang; Jeffrey G. McDonald; Benoit Sion; Anne Marie Lefrançois-Martinez; Françoise Caira; G. Veyssière; David J. Mangelsdorf; Jean Marc A Lobaccaro

Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRalpha and LXRbeta) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel LXR target. Under chronic dietary stress, adrenal glands from Lxralphabeta-/- mice accumulated free cholesterol. In contrast, wild-type animals maintained cholesterol homeostasis through basal expression of genes involved in cholesterol efflux and storage (ABC transporter A1 [ABCA1], apoE, SREBP-1c) while preventing steroidogenic gene (StAR) expression. Upon treatment with an LXR agonist that mimics activation by oxysterols, expression of these target genes was increased. Basally, Lxralphabeta-/- mice exhibited a marked decrease in ABCA1 and a derepression of StAR expression, causing a net decrease in cholesterol efflux and an increase in steroidogenesis. These changes occurred under conditions that prevented the acute stress response and resulted in a phenotype more specific to the loss of LXRalpha, including hypercorticosteronemia, cholesterol ester accumulation, and adrenomegaly. These results imply LXRalpha provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal gland, where cholesterol is under constant flux.


Clinical Pharmacology & Therapeutics | 2002

Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein.

Carolyn L. Cummins; Chi-Yuan Wu; Leslie Z. Benet

Clinical Pharmacology & Therapeutics (2002) 72, 474–489; doi: 10.1067/mcp.2002.128388


Science | 2014

Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

Anna Y. Lee; Robert P. St.Onge; Michael J. Proctor; Iain M. Wallace; Aaron H. Nile; Paul A. Spagnuolo; Yulia Jitkova; Marcela Gronda; Yan Wu; Moshe K. Kim; Kahlin Cheung-Ong; Nikko P. Torres; Eric D. Spear; Mitchell K.L. Han; Ulrich Schlecht; Sundari Suresh; Geoffrey Duby; Lawrence E. Heisler; Anuradha Surendra; Eula Fung; Malene L. Urbanus; Marinella Gebbia; Elena Lissina; Molly Miranda; Jennifer Chiang; Ana Aparicio; Mahel Zeghouf; Ronald W. Davis; Jacqueline Cherfils; Marc Boutry

Yeasty HIPHOP In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al. (p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions. Guilt by association helps identify the chemogenomic signatures of compounds targeting yeast genes. Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Molecular Endocrinology | 2008

Liver Receptor Homolog-1 Regulates Bile Acid Homeostasis but Is Not Essential for Feedback Regulation of Bile Acid Synthesis

Youn Kyoung Lee; Daniel R. Schmidt; Carolyn L. Cummins; Mihwa Choi; Li Peng; Yuan Zhang; Bryan Goodwin; Robert E. Hammer; David J. Mangelsdorf; Steven A. Kliewer

Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synthesis. In vitro studies suggest that LRH-1 may be involved both in stimulating basal CYP7A1 and CYP8B1 transcription and in repressing their expression as part of the nuclear bile acid receptor [farnesoid X receptor (FXR)]-small heterodimer partner signaling cascade, which culminates in small heterodimer partner binding to LRH-1 to repress gene transcription. However, in vivo analysis of LRH-1 actions has been hampered by the embryonic lethality of Lrh-1 knockout mice. To overcome this obstacle, mice were generated in which Lrh-1 was selectively disrupted in either hepatocytes or intestinal epithelium. LRH-1 deficiency in either tissue changed mRNA levels of genes involved in cholesterol and bile acid homeostasis. Surprisingly, LRH-1 deficiency in hepatocytes had no significant effect on basal Cyp7a1 expression or its repression by FXR. Whereas Cyp8b1 repression by FXR was also intact in mice deficient for LRH-1 in hepatocytes, basal CYP8B1 mRNA levels were significantly decreased, and there were corresponding changes in the composition of the bile acid pool. Taken together, these data reveal a broad role for LRH-1 in regulating bile acid homeostasis but demonstrate that LRH-1 is either not involved in the feedback regulation of bile acid synthesis or is compensated for by other factors.

Collaboration


Dive into the Carolyn L. Cummins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Motola

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Veerle Rottiers

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge