Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debbie Williams is active.

Publication


Featured researches published by Debbie Williams.


PLOS Biology | 2009

Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination.

Debora Bogani; Pam Siggers; Rachel Brixey; Nick Warr; Sarah Beddow; Jessica K. Edwards; Debbie Williams; Dagmar Wilhelm; Peter Koopman; Richard A. Flavell; Hongbo Chi; Harry Ostrer; Sara Wells; Michael Cheeseman; Andy Greenfield

The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad.


PLOS Genetics | 2010

A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy

Houman Ashrafian; Louise Docherty; Vincenzo C. Leo; Christopher Towlson; Monica Neilan; Violetta Steeples; Craig A. Lygate; Tertius Hough; Stuart Townsend; Debbie Williams; Sara Wells; Dominic P. Norris; Sarah Glyn-Jones; John M. Land; Ivana Barbaric; Zuzanne Lalanne; Paul Denny; Dorota Szumska; Shoumo Bhattacharya; Julian L. Griffin; Iain Hargreaves; Narcis Fernandez-Fuentes; Michael Cheeseman; Hugh Watkins; T. Neil Dear

Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.


Human Molecular Genetics | 2009

Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway.

Victoria L. Patterson; Christine Damrau; Anju Paudyal; Benjamin Reeve; Daniel T. Grimes; Michelle Stewart; Debbie Williams; Pam Siggers; Andy Greenfield; Jennifer N. Murdoch

The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data.


PLOS Genetics | 2011

HIF-VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants

Michael Cheeseman; Hayley E. Tyrer; Debbie Williams; Tertius Hough; Paras Pathak; Maria R. Romero; Helen Hilton; Sulzhan Bali; Andrew E. Parker; Lucie Vizor; Tom Purnell; Kate Vowell; Sara Wells; Mahmood F. Bhutta; Paul K. Potter; Steve D.M. Brown

Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF–mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF–mediated pathways, and we conclude that targeting molecules in HIF–VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.


RNA | 2012

MicroRNAs 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9

Joan E. Robson; Sally A. Eaton; Peter A. Underhill; Debbie Williams; Jo Peters

Genomic imprinting is the phenomenon whereby a subset of genes is differentially expressed according to parental origin. Imprinted genes tend to occur in clusters, and microRNAs are associated with the majority of well-defined clusters of imprinted genes. We show here that two microRNAs, miR-296 and miR-298, are part of the imprinted Gnas/GNAS clusters in both mice and humans. Both microRNAs show imprinted expression and are expressed from the paternally derived allele, but not the maternal allele. They arise from a long, noncoding antisense transcript, Nespas, with a promoter more than 27 kb away. Nespas had been shown previously to act in cis to regulate imprinted gene expression within the Gnas cluster. Using microarrays and luciferase assays, IKBKE, involved in many signaling pathways, and Tmed9, a protein transporter, were verified as new targets of miR-296. Thus, Nespas has two clear functions: as a cis-acting regulator within an imprinted gene cluster and as a precursor of microRNAs that modulate gene expression in trans. Furthermore, imprinted microRNAs, including miR-296 and miR-298, impose a parental specific modulation of gene expression of their target genes.


Development | 2014

ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis

Paraskevi Goggolidou; Jonathan Stevens; Francesco Agueci; Jennifer L. Keynton; Gabrielle Wheway; Daniel T. Grimes; Saloni H. Patel; Helen Hilton; Stine K. Morthorst; Antonella DiPaolo; Debbie Williams; Jeremy Sanderson; Svetlana V. Khoronenkova; Nicola Powles-Glover; Alexander Ermakov; Chris Esapa; Rosario Romero; Grigory L. Dianov; James Briscoe; Colin A. Johnson; Lotte B. Pedersen; Dominic P. Norris

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.


Human Molecular Genetics | 2012

Myofibrillar myopathy caused by a mutation in the motor domain of mouse MyHC IIb

Ramakrishna Kurapati; Caoimhe McKenna; Johan Lindqvist; Debbie Williams; Michelle Simon; Emily LeProust; Jane Baker; Michael Cheeseman; Natalie Carroll; Paul Denny; S. Laval; Hanns Lochmüller; Julien Ochala; Gonzalo Blanco

Ariel is a mouse mutant that suffers from skeletal muscle myofibrillar degeneration due to the rapid accumulation of large intracellular protein aggregates. This fulminant disease is caused by an ENU-induced recessive mutation resulting in an L342Q change within the motor domain of the skeletal muscle myosin protein MYH4 (MyHC IIb). Although normal at birth, homozygous mice develop hindlimb paralysis from Day 13, consistent with the timing of the switch from developmental to adult myosin isoforms in mice. The mutated myosin (MYH4(L342Q)) is an aggregate-prone protein. Notwithstanding the speed of the process, biochemical analysis of purified aggregates showed the presence of proteins typically found in human myofibrillar myopathies, suggesting that the genesis of ariel aggregates follows a pathogenic pathway shared with other conformational protein diseases of skeletal muscle. In contrast, heterozygous mice are overtly and histologically indistinguishable from control mice. MYH4(L342Q) is present in muscles from heterozygous mice at only 7% of the levels of the wild-type protein, resulting in a small but significant increase in force production in isolated single fibres and indicating that elimination of the mutant protein in heterozygotes prevents the pathological changes observed in homozygotes. Recapitulation of the L342Q change in the functional equivalent of mouse MYH4 in human muscles, MYH1, results in a more aggregate-prone protein.


Neuromuscular Disorders | 2006

Constitutive upregulations of titin-based signalling proteins in KY deficient muscles.

Jane Beatham; Katja Gehmlich; Peter F.M. van der Ven; J. Sarparanta; Debbie Williams; Peter A. Underhill; Christian Geier; Dieter O. Fürst; Bjarne Udd; Gonzalo Blanco

An increase in the expression of stretch/stress response elements in fast and slow muscles has been previously described in a transcriptional profiling of KY deficient muscles. Here, we have characterized the induction of this titin-based family of signalling proteins in ky/ky muscles at the protein level. Changes in expression of MLP, MARP2 and Xin have been related to the onset of dystrophic and adaptive changes that operate in ky/ky muscles. Our results indicate that induction of this set of genes is an early consequence of the interference caused by the absence of the KY protein. A search of muscle profiles of mouse models revealed such molecular hallmark only in muscles subjected to a single bout of eccentric contractions and specific titin mutants. Based on the role of this family as titin-based stress response molecules, it is suggested that titin structural/signalling instability is common to ky and titin mouse mutants and eccentric contractions.


PLOS Genetics | 2016

Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

Daniel T. Grimes; Jennifer L. Keynton; Maria T. Buenavista; Xingjian Jin; Saloni H. Patel; Shinohara Kyosuke; Jennifer Vibert; Debbie Williams; Hiroshi Hamada; Rohanah Hussain; Surya M. Nauli; Dominic P. Norris

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.


Human Molecular Genetics | 2009

Upregulation of PKD1L2 provokes a complex neuromuscular disease in the mouse

Francesca E. Mackenzie; Rosario Romero; Debbie Williams; Thomas H. Gillingwater; Helen Hilton; Jim Dick; Joanna Riddoch-Contreras; Frances Wong; Lisa Ireson; Nicola Powles-Glover; Genna Riley; Peter A. Underhill; Tertius Hough; Ruth M. Arkell; Linda Greensmith; Richard R. Ribchester; Gonzalo Blanco

Following a screen for neuromuscular mouse mutants, we identified ostes, a novel N-ethyl N-nitrosourea-induced mouse mutant with muscle atrophy. Genetic and biochemical evidence shows that upregulation of the novel, uncharacterized transient receptor potential polycystic (TRPP) channel PKD1L2 (polycystic kidney disease gene 1-like 2) underlies this disease. Ostes mice suffer from chronic neuromuscular impairments including neuromuscular junction degeneration, polyneuronal innervation and myopathy. Ectopic expression of PKD1L2 in transgenic mice reproduced the ostes myopathic changes and, indeed, caused severe muscle atrophy in Tg(Pkd1l2)/Tg(Pkd1l2) mice. Moreover, double-heterozygous mice (ostes/+, Tg(Pkd1l2)/0) suffer from myopathic changes more profound than each heterozygote, indicating positive correlation between PKD1L2 levels and disease severity. We show that, in vivo, PKD1L2 primarily associates with endogenous fatty acid synthase in normal skeletal muscle, and these proteins co-localize to costameric regions of the muscle fibre. In diseased ostes/ostes muscle, both proteins are upregulated, and ostes/ostes mice show signs of abnormal lipid metabolism. This work shows the first role for a TRPP channel in neuromuscular integrity and disease.

Collaboration


Dive into the Debbie Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Wells

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Hilton

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Simon

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Tertius Hough

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge