Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve D.M. Brown is active.

Publication


Featured researches published by Steve D.M. Brown.


Mammalian Genome | 1997

Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment.

Derek Rogers; Elizabeth M. C. Fisher; Steve D.M. Brown; Jo Peters; A.J. Hunter; Jo Martin

Abstract. For an understanding of the aberrant biology seen in mouse mutations and identification of more subtle phenotype variation, there is a need for a full clinical and pathological characterization of the animals. Although there has been some use of sophisticated techniques, the majority of behavioral and functional analyses in mice have been qualitative rather than quantitative in nature. There is, however, no comprehensive routine screening and testing protocol designed to identify and characterize phenotype variation or disorders associated with the mouse genome. We have developed the SHIRPA procedure to characterize the phenotype of mice in three stages. The primary screen utilizes standard methods to provide a behavioral and functional profile by observational assessment. The secondary screen involves a comprehensive behavioral assessment battery and pathological analysis. These protocols provide the framework for a general phenotype assessment that is suitable for a wide range of applications, including the characterization of spontaneous and induced mutants, the analysis of transgenic and gene-targeted phenotypes, and the definition of variation between strains. The tertiary screening stage described is tailored to the assessment of existing or potential models of neurological disease, as well as the assessment of phenotypic variability that may be the result of unknown genetic influences. SHIRPA utilizes standardized protocols for behavioral and functional assessment that provide a sensitive measure for quantifying phenotype expression in the mouse. These paradigms can be refined to test the function of specific neural pathways, which will, in turn, contribute to a greater understanding of neurological disorders.


Nature Genetics | 2000

A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.

Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim J. Hagan; Nigel K. Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan L. McCormack; Karen Pickford; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter H. Glenister; Claire E. Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth M. Arkell; Philomena Mburu; Rachel E. Hardisty; Amy E. Kiernan; Alexandra Erven

As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.


Current Biology | 2003

Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse

John A. Curtin; Elizabeth Quint; Vicky Tsipouri; Ruth M. Arkell; Bruce Cattanach; Andrew J. Copp; Deborah J. Henderson; Nigel K. Spurr; Philip Stanier; Elizabeth M. C. Fisher; Patrick M. Nolan; Karen P. Steel; Steve D.M. Brown; Ian C. Gray; Jennifer N. Murdoch

We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of failure to initiate neural tube closure. We show that these mutants, spin cycle and crash, carry independent missense mutations within the coding region of Celsr1, encoding a large protocadherin molecule [1]. Celsr1 is one of three mammalian homologs of Drosophila flamingo/starry night, which is essential for the planar cell polarity pathway in Drosophila together with frizzled, dishevelled, prickle, strabismus/van gogh, and rhoA. The identification of mouse mutants of Celsr1 provides the first evidence for the function of the Celsr family in planar cell polarity in mammals and further supports the involvement of a planar cell polarity pathway in vertebrate neurulation.


Journal of Cell Biology | 2010

α-Synuclein impairs macroautophagy: implications for Parkinson's disease.

Ashley R. Winslow; Chien-Wen Chen; Silvia Corrochano; Abraham Acevedo-Arozena; David E. Gordon; Andrew A. Peden; Maike Lichtenberg; Fiona M. Menzies; Brinda Ravikumar; Sara Imarisio; Steve D.M. Brown; Cahir J. O'Kane; David C. Rubinsztein

α-Synuclein impairs autophagosome formation and mislocalizes Atg9 by inhibiting Rab1a.


Nature Genetics | 2005

Dynein mutations impair autophagic clearance of aggregate-prone proteins.

Brinda Ravikumar; Abraham Acevedo-Arozena; Sara Imarisio; Zdenek Berger; Coralie Vacher; Cahir J. O'Kane; Steve D.M. Brown; David C. Rubinsztein

Mutations that affect the dynein motor machinery are sufficient to cause motor neuron disease. It is not known why there are aggregates or inclusions in affected tissues in mice with such mutations and in most forms of human motor neuron disease. Here we identify a new mechanism of inclusion formation by showing that decreased dynein function impairs autophagic clearance of aggregate-prone proteins. We show that mutations of the dynein machinery enhanced the toxicity of the mutation that causes Huntington disease in fly and mouse models. Furthermore, loss of dynein function resulted in premature aggregate formation by mutant huntingtin and increased levels of the autophagosome marker LC3-II in both cell culture and mouse models, compatible with impaired autophagosome-lysosome fusion.


Cell | 2007

Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

David A. Keays; Guoling Tian; Karine Poirier; Guo-Jen Huang; Christian Siebold; James Cleak; Peter L. Oliver; Martin Fray; Robert J. Harvey; Zoltán Molnár; Maria Carmen Piñon; Neil Dear; William Valdar; Steve D.M. Brown; Kay E. Davies; J. Nicholas P. Rawlins; Nicholas J. Cowan; Patrick M. Nolan; Jamel Chelly; Jonathan Flint

Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.


Nature Genetics | 2002

Genetic analysis of the mouse brain proteome

Joachim Klose; Christina Nock; Marion Herrmann; Kai Stühler; Katrin Marcus; Martin Blüggel; Eberhard Krause; Leonard C. Schalkwyk; Sohaila Rastan; Steve D.M. Brown; Konrad Büssow; Heinz Himmelbauer; Hans Lehrach

Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.


Nature Genetics | 2003

Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31

Philomena Mburu; Mirna Mustapha; Anabel Varela; Dominique Weil; Aziz El-Amraoui; Ralph H. Holme; Andreas Rump; Rachel E. Hardisty; Stéphane Blanchard; Roney S. Coimbra; Isabelle Perfettini; Nick Parkinson; Ann-Marie Mallon; Pete Glenister; Michael J.C. Rogers; Adam J.W. Paige; Lee Moir; Jo Clay; André Rosenthal; Xue Zhong Liu; Gonzalo Blanco; Karen P. Steel; Christine Petit; Steve D.M. Brown

The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain–containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.


Nature Cell Biology | 2007

The mouse ascending: perspectives for human-disease models

Nadia Rosenthal; Steve D.M. Brown

The laboratory mouse is widely considered the model organism of choice for studying the diseases of humans, with whom they share 99% of their genes. A distinguished history of mouse genetic experimentation has been further advanced by the development of powerful new tools to manipulate the mouse genome. The recent launch of several international initiatives to analyse the function of all mouse genes through mutagenesis, molecular analysis and phenotyping underscores the utility of the mouse for translating the information stored in the human genome into increasingly accurate models of human disease.


Current Biology | 2008

Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits

Matthias Groszer; David A. Keays; Robert M. J. Deacon; Joseph P. de Bono; Shweta Prasad-Mulcare; Simone Gaub; Muriel G. Baum; Catherine A. French; Jérôme Nicod; Julie A. Coventry; Wolfgang Enard; Martin Fray; Steve D.M. Brown; Patrick M. Nolan; Svante Pääbo; Keith M. Channon; Rui M. Costa; Jens Eilers; Günter Ehret; J. Nicholas P. Rawlins; Simon E. Fisher

Summary The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.

Collaboration


Dive into the Steve D.M. Brown's collaboration.

Top Co-Authors

Avatar

Roger D. Cox

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tertius Hough

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Wells

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge