Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Blacker is active.

Publication


Featured researches published by Deborah Blacker.


NeuroImage | 2006

An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

Rahul S. Desikan; Florent Ségonne; Bruce Fischl; Brian T. Quinn; Bradford C. Dickerson; Deborah Blacker; Randy L. Buckner; Anders M. Dale; R. Paul Maguire; Bradley T. Hyman; Marilyn S. Albert; Ronald J. Killiany

In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.


Nature Genetics | 2007

Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.

Lars Bertram; Matthew B. McQueen; Kristina Mullin; Deborah Blacker; Rudolph E. Tanzi

The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the ε4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11–1.38 for risk alleles and 0.92–0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases.


Neurology | 2005

Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD

Bradford C. Dickerson; David H. Salat; Douglas N. Greve; Elizabeth F. Chua; Erin Rand-Giovannetti; Dorene M. Rentz; Lars Bertram; Kristina Mullin; Rudolph E. Tanzi; Deborah Blacker; Marilyn S. Albert; Reisa A. Sperling

Objective: To use fMRI to investigate whether hippocampal and entorhinal activation during learning is altered in the earliest phase of mild cognitive impairment (MCI). Methods: Three groups of older individuals were studied: 10 cognitively intact controls, 9 individuals at the mild end of the spectrum of MCI, and 10 patients with probable Alzheimer disease (AD). Subjects performed a face-name associative encoding task during fMRI scanning, and were tested for recognition of stimuli afterward. Data were analyzed using a functional-anatomic method in which medial temporal lobe (MTL) regions of interest were identified from each individuals structural MRI, and fMRI activation was quantified within each region. Results: Significantly greater hippocampal activation was present in the MCI group compared to controls; there were no differences between these two groups in hippocampal or entorhinal volumes. In contrast, the AD group showed hippocampal and entorhinal hypoactivation and atrophy in comparison to controls. The subjects with MCI performed similarly to controls on the fMRI recognition memory task; patients with AD exhibited poorer performance. Across all 29 subjects, greater mean entorhinal activation was found in the subgroup of 13 carriers of the APOE ε4 allele than in the 16 noncarriers. Conclusions: The authors hypothesize that there is a phase of increased medial temporal lobe activation early in the course of prodromal Alzheimer disease followed by a subsequent decrease as the disease progresses.


The Journal of Neuroscience | 2006

Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer's Disease: An Independent Component Analysis

Kim A. Celone; Vince D. Calhoun; Bradford C. Dickerson; Alireza Atri; Elizabeth F. Chua; Saul L. Miller; Kristina M. DePeau; Doreen M. Rentz; Dennis J. Selkoe; Deborah Blacker; Marilyn S. Albert; Reisa A. Sperling

Memory function is likely subserved by multiple distributed neural networks, which are disrupted by the pathophysiological process of Alzheimers disease (AD). In this study, we used multivariate analytic techniques to investigate memory-related functional magnetic resonance imaging (fMRI) activity in 52 individuals across the continuum of normal aging, mild cognitive impairment (MCI), and mild AD. Independent component analyses revealed specific memory-related networks that activated or deactivated during an associative memory paradigm. Across all subjects, hippocampal activation and parietal deactivation demonstrated a strong reciprocal relationship. Furthermore, we found evidence of a nonlinear trajectory of fMRI activation across the continuum of impairment. Less impaired MCI subjects showed paradoxical hyperactivation in the hippocampus compared with controls, whereas more impaired MCI subjects demonstrated significant hypoactivation, similar to the levels observed in the mild AD subjects. We found a remarkably parallel curve in the pattern of memory-related deactivation in medial and lateral parietal regions with greater deactivation in less-impaired MCI and loss of deactivation in more impaired MCI and mild AD subjects. Interestingly, the failure of deactivation in these regions was also associated with increased positive activity in a neocortical attentional network in MCI and AD. Our findings suggest that loss of functional integrity of the hippocampal-based memory systems is directly related to alterations of neural activity in parietal regions seen over the course of MCI and AD. These data may also provide functional evidence of the interaction between neocortical and medial temporal lobe pathology in early AD.


Annals of Neurology | 2004

Medial temporal lobe function and structure in mild cognitive impairment

Bradford C. Dickerson; David H. Salat; Julianna F. Bates; Monika Atiya; Ronald J. Killiany; Douglas N. Greve; Anders M. Dale; Chantal E. Stern; Deborah Blacker; Marilyn S. Albert; Reisa A. Sperling

Functional magnetic resonance imaging (fMRI) was used to study memory‐associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were identified from each individuals structural MRI, and activation was quantified within each region. Greater extent of activation within the hippocampal formation and parahippocampal gyrus (PHG) was correlated with better memory performance. There was, however, a paradoxical relationship between extent of activation and clinical status at both baseline and follow‐up evaluations. Subjects with greater clinical impairment, based on the Clinical Dementia Rating Sum of Boxes, recruited a larger extent of the right PHG during encoding, even after accounting for atrophy. Moreover, those who subsequently declined over the 2.5 years of clinical follow‐up (44% of the subjects) activated a significantly greater extent of the right PHG during encoding, despite equivalent memory performance. We hypothesize that increased activation in MTL regions reflects a compensatory response to accumulating AD pathology and may serve as a marker for impending clinical decline. Ann Neurol 2004;56:27–35


Neurology | 1997

ApoE-4 and Age at Onset of Alzheimer's Disease The NIMH Genetics Initiative

Deborah Blacker; Jonathan L. Haines; L. Rodes; H. Terwedow; Rodney C.P. Go; Lindy E. Harrell; Rodney T. Perry; Susan Spear Bassett; Gary A. Chase; D. Meyers; Marilyn S. Albert; Rudolph E. Tanzi

Objective: To explore the impact of apoE-4 on Alzheimers disease (AD) and its age at onset. Design: A genetic linkage study using affected relative pairs, predominantly siblings. Setting: Three academic medical centers ascertained subjects from memory disorder clinics, nursing homes, and the local community. Subjects: 310 families including 679 subjects with AD by NINCDS/ADRDA and/or Khachaturian criteria and 231 unaffected subjects. Outcome measure: ApoE genotype. Analytic methods: Association, affected pedigree member, sibling pair, and lod score analyses. Results: ApoE-4 was strongly associated with AD in this sample (allele frequency = 0.46 vs. 0.14 in controls, p < 0.000001). Results of lod score, affected pedigree member analysis, and sib-pair analysis also supported apoE-4 as a risk factor for AD. When the sample was stratified on family mean age at onset, the risk conferred by apoE-4 was most marked in the 61 to 65 age group. Individuals with two copies of apoE-4 had a significantly lower age at onset than those with one or no copies (66.4 vs. 72.0, p < 0.001), but individuals with one copy did not differ from those with none. Within families, the individual with the earliest age at onset had, on average, significantly more apoE-4 alleles (p < 0.0001) than the individual with the latest onset. Discussion: This work supports previous reports of an association between apoE-4 and the development of AD and demonstrates that apoE-4 exerts its maximal effect before age 70. These findings have important implications for the potential use of apoE genotyping for diagnosis and prediction of disease. They also underscore the need to identify additional genetic factors involved in AD with onset beyond age 70 years. NEUROLOGY 1997;48: 139-147


NeuroImage | 2009

MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths

Jorge Jovicich; Silvester Czanner; Xiao Han; David H. Salat; Andre van der Kouwe; Brian T. Quinn; Jenni Pacheco; Marilyn S. Albert; Ronald J. Killiany; Deborah Blacker; R. Paul Maguire; H. Diana Rosas; Nikos Makris; Randy L. Gollub; Anders M. Dale; Bradford C. Dickerson; Bruce Fischl

Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal and abnormal neuroanatomy, but little is known about measurement reliability. Here we assess the impact of image acquisition variables (scan session, MRI sequence, scanner upgrade, vendor and field strengths), FreeSurfer segmentation pre-processing variables (image averaging, B1 field inhomogeneity correction) and segmentation analysis variables (probabilistic atlas) on resultant image segmentation volumes from older (n=15, mean age 69.5) and younger (both n=5, mean ages 34 and 36.5) healthy subjects. The variability between hippocampal, thalamic, caudate, putamen, lateral ventricular and total intracranial volume measures across sessions on the same scanner on different days is less than 4.3% for the older group and less than 2.3% for the younger group. Within-scanner measurements are remarkably reliable across scan sessions, being minimally affected by averaging of multiple acquisitions, B1 correction, acquisition sequence (MPRAGE vs. multi-echo-FLASH), major scanner upgrades (Sonata-Avanto, Trio-TrioTIM), and segmentation atlas (MPRAGE or multi-echo-FLASH). Volume measurements across platforms (Siemens Sonata vs. GE Signa) and field strengths (1.5 T vs. 3 T) result in a volume difference bias but with a comparable variance as that measured within-scanner, implying that multi-site studies may not necessarily require a much larger sample to detect a specific effect. These results suggest that volumes derived from automated segmentation of T1-weighted structural images are reliable measures within the same scanner platform, even after upgrades; however, combining data across platform and across field-strength introduces a bias that should be considered in the design of multi-site studies, such as clinical drug trials. The results derived from the young groups (scanner upgrade effects and B1 inhomogeneity correction effects) should be considered as preliminary and in need for further validation with a larger dataset.


American Journal of Human Genetics | 2008

Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

Lars Bertram; Christoph Lange; Kristina Mullin; Michele Parkinson; Monica Hsiao; Meghan F. Hogan; Brit Maren Schjeide; Basavaraj Hooli; Jason R. DiVito; Iuliana Ionita; Hongyu Jiang; Nan M. Laird; Thomas Moscarillo; Kari L. Ohlsen; Kathryn J. Elliott; Xin Wang; Diane Hu-Lince; Marie Ryder; Amy Murphy; Steven L. Wagner; Deborah Blacker; K. David Becker; Rudolph E. Tanzi

Alzheimers disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.


JAMA Neurology | 2010

Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes.

Gyungah Jun; Adam C. Naj; Gary W. Beecham; Li-San Wang; Jacqueline Buros; Paul Gallins; Joseph D. Buxbaum; Nilufer Ertekin-Taner; M. Daniele Fallin; Robert P. Friedland; Rivka Inzelberg; Patricia L. Kramer; Ekaterina Rogaeva; Peter St George-Hyslop; Laura B. Cantwell; Beth A. Dombroski; Andrew J. Saykin; Eric M. Reiman; David A. Bennett; John C. Morris; Kathryn L. Lunetta; Eden R. Martin; Thomas J. Montine; Alison Goate; Deborah Blacker; Debby W. Tsuang; Duane Beekly; L. Adrienne Cupples; Hakon Hakonarson; Walter A. Kukull

OBJECTIVES To determine whether genotypes at CLU, PICALM, and CR1 confer risk for Alzheimer disease (AD) and whether risk for AD associated with these genes is influenced by apolipoprotein E (APOE) genotypes. DESIGN Association study of AD and CLU, PICALM, CR1, and APOE genotypes. SETTING Academic research institutions in the United States, Canada, and Israel. PARTICIPANTS Seven thousand seventy cases with AD, 3055 with autopsies, and 8169 elderly cognitively normal controls, 1092 with autopsies, from 12 different studies, including white, African American, Israeli-Arab, and Caribbean Hispanic individuals. RESULTS Unadjusted, CLU (odds ratio [OR], 0.91; 95% confidence interval [CI], 0.85-0.96 for single-nucleotide polymorphism [SNP] rs11136000), CR1 (OR, 1.14; 95% CI, 1.07-1.22; SNP rs3818361), and PICALM (OR, 0.89; 95% CI, 0.84-0.94, SNP rs3851179) were associated with AD in white individuals. None were significantly associated with AD in the other ethnic groups. APOE ε4 was significantly associated with AD (ORs, 1.80-9.05) in all but 1 small white cohort and in the Arab cohort. Adjusting for age, sex, and the presence of at least 1 APOE ε4 allele greatly reduced evidence for association with PICALM but not CR1 or CLU. Models with the main SNP effect, presence or absence of APOE ε4, and an interaction term showed significant interaction between presence or absence of APOE ε4 and PICALM. CONCLUSIONS We confirm in a completely independent data set that CR1, CLU, and PICALM are AD susceptibility loci in European ancestry populations. Genotypes at PICALM confer risk predominantly in APOE ε4-positive subjects. Thus, APOE and PICALM synergistically interact.


American Journal of Human Genetics | 2005

Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q

Matthew B. McQueen; Bernie Devlin; Stephen V. Faraone; Vishwajit L. Nimgaonkar; Pamela Sklar; Jordan W. Smoller; Rami Abou Jamra; Margot Albus; Silviu-Alin Bacanu; Miron Baron; Thomas B. Barrett; Wade H. Berrettini; Deborah Blacker; William Byerley; Sven Cichon; Willam Coryell; Nicholas John Craddock; Mark J. Daly; J. Raymond DePaulo; Howard J. Edenberg; Tatiana Foroud; Michael Gill; T. Conrad Gilliam; Marian Lindsay Hamshere; Ian Richard Jones; Lisa Jones; S H Juo; John R. Kelsoe; David Lambert; Christoph Lange

Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.

Collaboration


Dive into the Deborah Blacker's collaboration.

Top Co-Authors

Avatar

Marilyn S. Albert

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaakov Stern

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bradley T. Hyman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nikolaos Scarmeas

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Brandt

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge