Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Bertram is active.

Publication


Featured researches published by Lars Bertram.


Journal of Clinical Investigation | 2005

The genetic epidemiology of neurodegenerative disease

Lars Bertram; Rudolph E. Tanzi

Gene defects play a major role in the pathogenesis of degenerative disorders of the nervous system. In fact, it has been the very knowledge gained from genetic studies that has allowed the elucidation of the molecular mechanisms underlying the etiology and pathogenesis of many neurodegenerative disorders. In this review, we discuss the current status of genetic epidemiology of the most common neurodegenerative diseases: Alzheimer disease, Parkinson disease, Lewy body dementia, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington disease, and prion diseases, with a particular focus on similarities and differences among these syndromes.


Alzheimers & Dementia | 2016

Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria

Bruno Dubois; Harald Hampel; Howard Feldman; Philip Scheltens; Paul S. Aisen; Sandrine Andrieu; Hovagim Bakardjian; Habib Benali; Lars Bertram; Kaj Blennow; Karl Broich; Enrica Cavedo; Sebastian J. Crutch; Jean-François Dartigues; Charles Duyckaerts; Stéphane Epelbaum; Giovanni B. Frisoni; Serge Gauthier; Remy Genthon; Alida A. Gouw; Marie Odile Habert; David M. Holtzman; Miia Kivipelto; Simone Lista; José Luis Molinuevo; Sid E. O'Bryant; Gil D. Rabinovici; Christopher C. Rowe; Stephen Salloway; Lon S. Schneider

During the past decade, a conceptual shift occurred in the field of Alzheimers disease (AD) considering the disease as a continuum. Thanks to evolving biomarker research and substantial discoveries, it is now possible to identify the disease even at the preclinical stage before the occurrence of the first clinical symptoms. This preclinical stage of AD has become a major research focus as the field postulates that early intervention may offer the best chance of therapeutic success. To date, very little evidence is established on this “silent” stage of the disease. A clarification is needed about the definitions and lexicon, the limits, the natural history, the markers of progression, and the ethical consequence of detecting the disease at this asymptomatic stage. This article is aimed at addressing all the different issues by providing for each of them an updated review of the literature and evidence, with practical recommendations.


Alzheimers & Dementia | 2010

Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

Andrew J. Saykin; Li Shen; Tatiana Foroud; Steven G. Potkin; Shanker Swaminathan; Sungeun Kim; Shannon L. Risacher; Kwangsik Nho; Matthew J. Huentelman; David Craig; Paul M. Thompson; Jason L. Stein; Jason H. Moore; Lindsay A. Farrer; Robert C. Green; Lars Bertram; Clifford R. Jack; Michael W. Weiner

The role of the Alzheimers Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome‐wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within the Alzheimers Disease Neuroimaging Initiative. Genome‐wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimers disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials.


Human Molecular Genetics | 2009

Genome-wide association studies in Alzheimer's disease

Lars Bertram; Rudolph E. Tanzi

Genome-wide association studies (GWAS) have gained considerable momentum over the last couple of years for the identification of novel complex disease genes. In the field of Alzheimers disease (AD), there are currently eight published and two provisionally reported GWAS, highlighting over two dozen novel potential susceptibility loci beyond the well-established APOE association. On the basis of the data available at the time of this writing, the most compelling novel GWAS signal has been observed in GAB2 (GRB2-associated binding protein 2), followed by less consistently replicated signals in galanin-like peptide (GALP), piggyBac transposable element derived 1 (PGBD1), tyrosine kinase, non-receptor 1 (TNK1). Furthermore, consistent replication has been recently announced for CLU (clusterin, also known as apolipoprotein J). Finally, there are at least three replicated loci in hitherto uncharacterized genomic intervals on chromosomes 14q32.13, 14q31.2 and 6q24.1 likely implicating the existence of novel AD genes in these regions. In this review, we will discuss the characteristics and potential relevance to pathogenesis of the outcomes of all currently available GWAS in AD. A particular emphasis will be laid on findings with independent data in favor of the original association.


Nature | 2013

Dysfunctional nitric oxide signalling increases risk of myocardial infarction

Jeanette Erdmann; Klaus Stark; Ulrike Esslinger; Philipp Moritz Rumpf; Doris Koesling; Cor de Wit; Frank J. Kaiser; Diana Braunholz; Anja Medack; Marcus Fischer; Martina E. Zimmermann; Stephanie Tennstedt; Elisabeth Graf; Sebastian H. Eck; Zouhair Aherrahrou; Janja Nahrstaedt; Christina Willenborg; Petra Bruse; Ingrid Brænne; Markus M. Nöthen; Per Hofmann; Peter S. Braund; Evanthia Mergia; Wibke Reinhard; Christof Burgdorf; Stefan Schreiber; Anthony J. Balmforth; Alistair S. Hall; Lars Bertram; Elisabeth Steinhagen-Thiessen

Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.


PLOS ONE | 2010

Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis

Bernd Timmermann; Martin Kerick; Christina Roehr; Axel Fischer; Melanie Isau; Stefan Boerno; Andrea Wunderlich; Christian Barmeyer; Petra Seemann; Jana Koenig; Michael Lappe; Andreas W. Kuss; Masoud Garshasbi; Lars Bertram; Kathrin Trappe; Martin Werber; Bernhard G. Herrmann; Kurt Zatloukal; Hans Lehrach; Michal R. Schweiger

Background Colorectal cancer (CRC) is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation. Methodology/Principal Findings Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS) and microsatellite instable (MSI) colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function. Conclusions/Significance We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.


web science | 2009

Genome-Wide Association Studies, Field Synopses, and the Development of the Knowledge Base on Genetic Variation and Human Diseases

Muin J. Khoury; Lars Bertram; Paolo Boffetta; Adam S. Butterworth; Stephen J. Chanock; Siobhan M. Dolan; Isabel Fortier; Montserrat Garcia-Closas; Marta Gwinn; Julian P. T. Higgins; A. Cecile J. W. Janssens; James Ostell; Ryan P. Owen; Pagon Ra; Timothy R. Rebbeck; Nathaniel Rothman; Jonine L. Bernstein; Paul R. Burton; Harry Campbell; Anand Chockalingam; Helena Furberg; Julian Little; Thomas R. O'Brien; Daniela Seminara; Paolo Vineis; Deborah M. Winn; Wei Yu; John P. A. Ioannidis

Genome-wide association studies (GWAS) have led to a rapid increase in available data on common genetic variants and phenotypes and numerous discoveries of new loci associated with susceptibility to common complex diseases. Integrating the evidence from GWAS and candidate gene studies depends on concerted efforts in data production, online publication, database development, and continuously updated data synthesis. Here the authors summarize current experience and challenges on these fronts, which were discussed at a 2008 multidisciplinary workshop sponsored by the Human Genome Epidemiology Network. Comprehensive field synopses that integrate many reported gene-disease associations have been systematically developed for several fields, including Alzheimers disease, schizophrenia, bladder cancer, coronary heart disease, preterm birth, and DNA repair genes in various cancers. The authors summarize insights from these field synopses and discuss remaining unresolved issues—especially in the light of evidence from GWAS, for which they summarize empirical P-value and effect-size data on 223 discovered associations for binary outcomes (142 with P < 10−7). They also present a vision of collaboration that builds reliable cumulative evidence for genetic associations with common complex diseases and a transparent, distributed, authoritative knowledge base on genetic variation and human health. As a next step in the evolution of Human Genome Epidemiology reviews, the authors invite investigators to submit field synopses for possible publication in the American Journal of Epidemiology.


Trends in Genetics | 2010

The pursuit of susceptibility genes for Alzheimer's disease: progress and prospects.

Kristel Sleegers; Jean-Charles Lambert; Lars Bertram; Marc Cruts; Philippe Amouyel; Christine Van Broeckhoven

The recent discoveries in genome-wide association studies (GWAS) of novel susceptibility loci (CLU, CR1 and PICALM) for Alzheimers disease (AD) have elicited considerable interest in the AD community. But what are the implications of these purely epidemiological findings for our understanding of disease etiology and patient care? In this review, we attempt to place these findings in the context of current and future AD genetics research. CLU, CR1 and PICALM support existing hypotheses about the amyloid, lipid, chaperone and chronic inflammatory pathways in AD pathogenesis. We discuss how these and future findings can be translated into efforts to ameliorate patient care by genetic profiling for risk prediction and pharmacogenetics and by guiding drug development.


Progress in Molecular Biology and Translational Science | 2012

The Genetics of Alzheimer’s Disease

Lars Bertram; Rudolph E. Tanzi

Genetic factors play a major role in determining a persons risk to develop Alzheimers disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies.


Human Molecular Genetics | 2010

The COPD genetic association compendium: a comprehensive online database of COPD genetic associations

Peter J. Castaldi; Michael H. Cho; Matthew Cohn; Fawn Langerman; Sienna Moran; Nestor Tarragona; Hala Moukhachen; Radhika Venugopal; Delvina Hasimja; Esther Kao; Byron C. Wallace; Craig P. Hersh; Sachin Bagade; Lars Bertram; Edwin K. Silverman; Thomas A Trikalinos

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. COPD is thought to arise from the interaction of environmental exposures and genetic susceptibility, and major research efforts are underway to identify genetic determinants of COPD susceptibility. With the exception of SERPINA1, genetic associations with COPD identified by candidate gene studies have been inconsistently replicated, and this literature is difficult to interpret. We conducted a systematic review and meta-analysis of all population-based, case-control candidate gene COPD studies indexed in PubMed before 16 July 2008. We stored our findings in an online database, which serves as an up-to-date compendium of COPD genetic associations and cumulative meta-analysis estimates. On the basis of our systematic review, the vast majority of COPD candidate gene era studies are underpowered to detect genetic effect odds ratios of 1.2-1.5. We identified 27 genetic variants with adequate data for quantitative meta-analysis. Of these variants, four were significantly associated with COPD susceptibility in random effects meta-analysis, the GSTM1 null variant (OR 1.45, CI 1.09-1.92), rs1800470 in TGFB1 (0.73, CI 0.64-0.83), rs1800629 in TNF (OR 1.19, CI 1.01-1.40) and rs1799896 in SOD3 (OR 1.97, CI 1.24-3.13). In summary, most COPD candidate gene era studies are underpowered to detect moderate-sized genetic effects. Quantitative meta-analysis identified four variants in GSTM1, TGFB1, TNF and SOD3 that show statistically significant evidence of association with COPD susceptibility.

Collaboration


Dive into the Lars Bertram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko Hiltunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge