Deborah F. Pinney
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah F. Pinney.
Nucleic Acids Research | 2009
Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Jennifer Dommer; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Christian J. Stoeckert; Charles Treatman; Haiming Wang
PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories—annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.
Nucleic Acids Research | 2010
Martin Aslett; Cristina Aurrecoechea; Matthew Berriman; John Brestelli; Brian P. Brunk; Mark Carrington; Daniel P. Depledge; Steve Fischer; Bindu Gajria; Xin Gao; Malcolm J. Gardner; Alan R. Gingle; Greg Grant; Omar S. Harb; Mark Heiges; Christiane Hertz-Fowler; Robin Houston; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Flora J. Logan; John A. Miller; Siddhartha Mitra; Peter J. Myler; Vishal Nayak; Cary Pennington; Isabelle Phan; Deborah F. Pinney
TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ‘User Comments’ may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate.
Nucleic Acids Research | 2007
Bindu Gajria; Amit Bahl; John Brestelli; Jennifer Dommer; Steve Fischer; Xin Gao; Mark Heiges; John Iodice; Jessica C. Kissinger; Aaron J. Mackey; Deborah F. Pinney; David S. Roos; Christian J. Stoeckert; Haiming Wang; Brian P. Brunk
ToxoDB (http://ToxoDB.org) is a genome and functional genomic database for the protozoan parasite Toxoplasma gondii. It incorporates the sequence and annotation of the T. gondii ME49 strain, as well as genome sequences for the GT1, VEG and RH (Chr Ia, Chr Ib) strains. Sequence information is integrated with various other genomic-scale data, including community annotation, ESTs, gene expression and proteomics data. ToxoDB has matured significantly since its initial release. Here we outline the numerous updates with respect to the data and increased functionality available on the website.
Nucleic Acids Research | 2009
Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Jane M. Carlton; Jennifer Dommer; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Hilary G. Morrison; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Christian J. Stoeckert; Steven A. Sullivan; Charles Treatman; Haiming Wang
GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data.
Nucleic Acids Research | 2012
Jason E. Stajich; Todd W. Harris; Brian P. Brunk; John Brestelli; Steve Fischer; Omar S. Harb; Jessica C. Kissinger; Wei Li; Vishal Nayak; Deborah F. Pinney; Christian J. Stoeckert; David S. Roos
FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
Nucleic Acids Research | 2010
Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Ganesh Srinivasamoorthy; Christian J. Stoeckert; Ryan Thibodeau; Charles Treatman; Haiming Wang
EuPathDB (http://EuPathDB.org; formerly ApiDB) is an integrated database covering the eukaryotic pathogens of the genera Cryptosporidium, Giardia, Leishmania, Neospora, Plasmodium, Toxoplasma, Trichomonas and Trypanosoma. While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all these resources, and the opportunity to leverage orthology for searches across genera. The most recent release of EuPathDB includes updates and changes affecting data content, infrastructure and the user interface, improving data access and enhancing the user experience. EuPathDB currently supports more than 80 searches and the recently-implemented ‘search strategy’ system enables users to construct complex multi-step searches via a graphical interface. Search results are dynamically displayed as the strategy is constructed or modified, and can be downloaded, saved, revised, or shared with other database users.
Nucleic Acids Research | 2013
Cristina Aurrecoechea; Ana Barreto; John Brestelli; Brian P. Brunk; Shon Cade; Ryan Doherty; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Sufen Hu; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Deborah F. Pinney; Brian Pitts; David S. Roos; Ganesh Srinivasamoorthy; Christian J. Stoeckert; Haiming Wang; Susanne Warrenfeltz
EuPathDB (http://eupathdb.org) resources include 11 databases supporting eukaryotic pathogen genomic and functional genomic data, isolate data and phylogenomics. EuPathDB resources are built using the same infrastructure and provide a sophisticated search strategy system enabling complex interrogations of underlying data. Recent advances in EuPathDB resources include the design and implementation of a new data loading workflow, a new database supporting Piroplasmida (i.e. Babesia and Theileria), the addition of large amounts of new data and data types and the incorporation of new analysis tools. New data include genome sequences and annotation, strand-specific RNA-seq data, splice junction predictions (based on RNA-seq), phosphoproteomic data, high-throughput phenotyping data, single nucleotide polymorphism data based on high-throughput sequencing (HTS) and expression quantitative trait loci data. New analysis tools enable users to search for DNA motifs and define genes based on their genomic colocation, view results from searches graphically (i.e. genes mapped to chromosomes or isolates displayed on a map) and analyze data from columns in result tables (word cloud and histogram summaries of column content). The manuscript herein describes updates to EuPathDB since the previous report published in NAR in 2010.
Nature Communications | 2016
Hernan Lorenzi; Asis Khan; Michael S. Behnke; Sivaranjani Namasivayam; Lakshmipuram S. Swapna; Michalis Hadjithomas; Svetlana Karamycheva; Deborah F. Pinney; Brian P. Brunk; James W. Ajioka; Daniel Ajzenberg; John C. Boothroyd; Jon P. Boyle; Marie Laure Dardé; Maria A. Diaz-Miranda; J. P. Dubey; Heather M. Fritz; Solange Maria Gennari; Brian D. Gregory; Kami Kim; Jeroen Saeij; C. Su; Michael W. White; Xing Quan Zhu; Daniel K. Howe; Benjamin M. Rosenthal; Michael E. Grigg; John Parkinson; Liang Liu; Jessica C. Kissinger
Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity.
Nucleic Acids Research | 2011
Cristina Aurrecoechea; Ana Barreto; John Brestelli; Brian P. Brunk; Elisabet V. Caler; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Vishal Nayak; Cary Pennington; Deborah F. Pinney; Brian Pitts; David S. Roos; Ganesh Srinivasamoorthy; Christian J. Stoeckert; Charles Treatman; Haiming Wang
AmoebaDB (http://AmoebaDB.org) and MicrosporidiaDB (http://MicrosporidiaDB.org) are new functional genomic databases serving the amoebozoa and microsporidia research communities, respectively. AmoebaDB contains the genomes of three Entamoeba species (E. dispar, E. invadens and E. histolityca) and microarray expression data for E. histolytica. MicrosporidiaDB contains the genomes of Encephalitozoon cuniculi, E. intestinalis and E. bieneusi. The databases belong to the National Institute of Allergy and Infectious Diseases (NIAID) funded EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center family of integrated databases and assume the same architectural and graphical design as other EuPathDB resources such as PlasmoDB and TriTrypDB. Importantly they utilize the graphical strategy builder that affords a database user the ability to ask complex multi-data-type questions with relative ease and versatility. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs, protein characteristics, phylogenetic relationships and functional data such as transcript (microarray and EST evidence) and protein expression data. Search strategies can be saved within a user’s profile for future retrieval and may also be shared with other researchers using a unique strategy web address.
Nucleic Acids Research | 2004
Li Li; Jonathan Crabtree; Steve Fischer; Deborah F. Pinney; Christian J. Stoeckert; L. David Sibley; David S. Roos
ApiEST-DB (http://www.cbil.upenn.edu/paradbs-servlet/) provides integrated access to publicly available EST data from protozoan parasites in the phylum Apicomplexa. The database currently incorporates a total of nearly 100,000 ESTs from several parasite species of clinical and/or veterinary interest, including Eimeria tenella, Neospora caninum, Plasmodium falciparum, Sarcocystis neurona and Toxoplasma gondii. To facilitate analysis of these data, EST sequences were clustered and assembled to form consensus sequences for each organism, and these assemblies were then subjected to automated annotation via similarity searches against protein and domain databases. The underlying relational database infrastructure, Genomics Unified Schema (GUS), enables complex biologically based queries, facilitating validation of gene models, identification of alternative splicing, detection of single nucleotide polymorphisms, identification of stage-specific genes and recognition of phylogenetically conserved and phylogenetically restricted sequences.