Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Brestelli is active.

Publication


Featured researches published by John Brestelli.


Nucleic Acids Research | 2009

PlasmoDB: a functional genomic database for malaria parasites

Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Jennifer Dommer; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Christian J. Stoeckert; Charles Treatman; Haiming Wang

PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories—annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.


Nucleic Acids Research | 2010

TriTrypDB: a functional genomic resource for the Trypanosomatidae

Martin Aslett; Cristina Aurrecoechea; Matthew Berriman; John Brestelli; Brian P. Brunk; Mark Carrington; Daniel P. Depledge; Steve Fischer; Bindu Gajria; Xin Gao; Malcolm J. Gardner; Alan R. Gingle; Greg Grant; Omar S. Harb; Mark Heiges; Christiane Hertz-Fowler; Robin Houston; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Flora J. Logan; John A. Miller; Siddhartha Mitra; Peter J. Myler; Vishal Nayak; Cary Pennington; Isabelle Phan; Deborah F. Pinney

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ‘User Comments’ may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate.


Nucleic Acids Research | 2007

ToxoDB: an integrated Toxoplasma gondii database resource

Bindu Gajria; Amit Bahl; John Brestelli; Jennifer Dommer; Steve Fischer; Xin Gao; Mark Heiges; John Iodice; Jessica C. Kissinger; Aaron J. Mackey; Deborah F. Pinney; David S. Roos; Christian J. Stoeckert; Haiming Wang; Brian P. Brunk

ToxoDB (http://ToxoDB.org) is a genome and functional genomic database for the protozoan parasite Toxoplasma gondii. It incorporates the sequence and annotation of the T. gondii ME49 strain, as well as genome sequences for the GT1, VEG and RH (Chr Ia, Chr Ib) strains. Sequence information is integrated with various other genomic-scale data, including community annotation, ESTs, gene expression and proteomics data. ToxoDB has matured significantly since its initial release. Here we outline the numerous updates with respect to the data and increased functionality available on the website.


PLOS Genetics | 2005

Glucocorticoid Receptor-Dependent Gene Regulatory Networks

Phillip P. Le; Joshua R. Friedman; Jonathan Schug; John Brestelli; J. Brandon Parker; Klaus H. Kaestner

While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR) remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies.


Nucleic Acids Research | 2009

GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis

Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Jane M. Carlton; Jennifer Dommer; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Hilary G. Morrison; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Christian J. Stoeckert; Steven A. Sullivan; Charles Treatman; Haiming Wang

GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data.


Nucleic Acids Research | 2012

FungiDB: an integrated functional genomics database for fungi

Jason E. Stajich; Todd W. Harris; Brian P. Brunk; John Brestelli; Steve Fischer; Omar S. Harb; Jessica C. Kissinger; Wei Li; Vishal Nayak; Deborah F. Pinney; Christian J. Stoeckert; David S. Roos

FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.


Journal of Clinical Investigation | 2004

Foxa2 regulates multiple pathways of insulin secretion

Kristen A. Lantz; Marko Z. Vatamaniuk; John Brestelli; Joshua R. Friedman; Franz M. Matschinsky; Klaus H. Kaestner

The regulation of insulin secretion by pancreatic beta cells is perturbed in several diseases, including adult-onset (type 2) diabetes and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). The first mouse model for PHHI has a conditional deletion of the gene encoding the winged-helix transcription factor Foxa2 (Forkhead box a2, formerly Hepatocyte nuclear factor 3beta) in pancreatic beta cells. Using isolated islets, we found that Foxa2 deficiency resulted in excessive insulin release in response to amino acids and complete loss of glucose-stimulated insulin secretion. Most PHHI cases are associated with mutations in SUR1 (Sulfonylurea receptor 1) or KIR6.2 (Inward rectifier K(+) channel member 6.2), which encode the subunits of the ATP-sensitive K(+) channel, and RNA in situ hybridization of mutant mouse islets revealed that expression of both genes is Foxa2 dependent. We utilized expression profiling to identify additional targets of Foxa2. Strikingly, one of these genes, Hadhsc, encodes short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase, deficiency of which has been shown to cause PHHI in humans. Hadhsc is a direct target of Foxa2, as demonstrated by cotransfection as well as in vivo chromatin immunoprecipitation experiments using isolated islets. Thus, we have established Foxa2 as an essential activator of genes that function in multiple pathways governing insulin secretion.


Nucleic Acids Research | 2010

EuPathDB: a portal to eukaryotic pathogen databases

Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Ganesh Srinivasamoorthy; Christian J. Stoeckert; Ryan Thibodeau; Charles Treatman; Haiming Wang

EuPathDB (http://EuPathDB.org; formerly ApiDB) is an integrated database covering the eukaryotic pathogens of the genera Cryptosporidium, Giardia, Leishmania, Neospora, Plasmodium, Toxoplasma, Trichomonas and Trypanosoma. While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all these resources, and the opportunity to leverage orthology for searches across genera. The most recent release of EuPathDB includes updates and changes affecting data content, infrastructure and the user interface, improving data access and enhancing the user experience. EuPathDB currently supports more than 80 searches and the recently-implemented ‘search strategy’ system enables users to construct complex multi-step searches via a graphical interface. Search results are dynamically displayed as the strategy is constructed or modified, and can be downloaded, saved, revised, or shared with other database users.


Journal of Biological Chemistry | 2001

Foxa3 (Hepatocyte Nuclear Factor 3γ) Is Required for the Regulation of Hepatic GLUT2 Expression and the Maintenance of Glucose Homeostasis during a Prolonged Fast

Wei Shen; L. Marie Scearce; John Brestelli; Newman J. Sund; Klaus H. Kaestner

The winged helix transcription factors, hepatocyte nuclear factors 3α, -β, and -γ (HNF-3, encoded by the Foxa1, -a2, and -a3genes, respectively), are expressed early in embryonic endoderm and play important roles in the regulation of gene expression in liver and pancreas. Foxa1 has been shown to be required for glucagon secretion in the pancreas, whereas Foxa2 is critical for the regulation of insulin secretion in pancreatic β-cells. Here we address the role of Foxa3 in the maintenance of glucose homeostasis. Mice homozygous for a null mutation in Foxa3appear normal under fed conditions. However, when fasted,Foxa3 −/− mice have a significantly lower blood glucose compared with control mice. The fasting hypoglycemia inFoxa3 −/− mice could not be attributed to defects in pancreatic hormone secretion, ketone production, or hepatic glycogen breakdown. Surprisingly, mRNA levels for several gluconeogenic enzymes were up-regulated appropriately in fastedFoxa3 −/− mice, despite the fact that the corresponding genes had been shown to be activated by FOXA proteins in vitro. However, the mRNA for the plasma membrane glucose transporter GLUT2 was decreased by 64% in the fasted and 93% in the fed state, suggesting that efflux of newly synthesized glucose is limiting in Foxa3 −/− hepatocytes. Thus, Foxa3 is the dominating transcriptional regulator of GLUT2 expression in hepatocytes in vivo. In addition, we investigated the hepatic transcription factor network inFoxa3 −/− mice and found that the normal activation of HNF-4α, HNF-1α, and PGC-1 induced by fasting is attenuated in mice lacking Foxa3.


Nucleic Acids Research | 2013

EuPathDB: The Eukaryotic Pathogen database

Cristina Aurrecoechea; Ana Barreto; John Brestelli; Brian P. Brunk; Shon Cade; Ryan Doherty; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Sufen Hu; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; Deborah F. Pinney; Brian Pitts; David S. Roos; Ganesh Srinivasamoorthy; Christian J. Stoeckert; Haiming Wang; Susanne Warrenfeltz

EuPathDB (http://eupathdb.org) resources include 11 databases supporting eukaryotic pathogen genomic and functional genomic data, isolate data and phylogenomics. EuPathDB resources are built using the same infrastructure and provide a sophisticated search strategy system enabling complex interrogations of underlying data. Recent advances in EuPathDB resources include the design and implementation of a new data loading workflow, a new database supporting Piroplasmida (i.e. Babesia and Theileria), the addition of large amounts of new data and data types and the incorporation of new analysis tools. New data include genome sequences and annotation, strand-specific RNA-seq data, splice junction predictions (based on RNA-seq), phosphoproteomic data, high-throughput phenotyping data, single nucleotide polymorphism data based on high-throughput sequencing (HTS) and expression quantitative trait loci data. New analysis tools enable users to search for DNA motifs and define genes based on their genomic colocation, view results from searches graphically (i.e. genes mapped to chromosomes or isolates displayed on a map) and analyze data from columns in result tables (word cloud and histogram summaries of column content). The manuscript herein describes updates to EuPathDB since the previous report published in NAR in 2010.

Collaboration


Dive into the John Brestelli's collaboration.

Top Co-Authors

Avatar

Klaus H. Kaestner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah F. Pinney

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Steve Fischer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Brian P. Brunk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Roos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John Iodice

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bindu Gajria

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge