Deborah Ferrari
University of Connecticut Health Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deborah Ferrari.
Mechanisms of Development | 1993
Caroline N. Dealy; Adam Roth; Deborah Ferrari; Anthony M. C. Brown; Robert A. Kosher
The Wnt gene family encodes a group of secreted signalling molecules that have been implicated in the regulation of cell fate and pattern formation during embryogenesis. We have examined the patterns of expression of two members of the chicken Wnt family, Wnt-5a and Wnt-7a, during development of the chick limb bud. Wnt-5a is expressed in the apical ectodermal ridge which directs outgrowth of limb mesoderm. Wnt-5a also exhibits three quantitatively distinct domains of expression along the proximodistal (PD) axis of the limb mesoderm that may correspond to the regions which will give rise to the three distinct PD segments of the limb, the autopod, zeugopod, and stylopod. In contrast, Wnt-7a expression in the limb bud is specifically limited to the dorsal ectoderm. These observations suggest possible roles for Wnt-5a and Wnt-7a in pattern formation along the PD and dorsoventral axes of the developing chick limb bud. In addition, Wnt-5a and Wnt-7a exhibit spatially discrete domains of expression in several other regions of the chick embryo consistent with developmental roles for these genes in a variety of other tissues.
Mechanisms of Development | 1995
Deborah Ferrari; Lauro Sumoy; Jennifer Gannon; Hailing Sun; Anthony M. C. Brown; William B. Upholt; Robert A. Kosher
Here we report the isolation from a chick limb bud cDNA library of a cDNA that contains the full coding sequence of chicken Dlx-5, a member of the Distal-less (Dlx) family of homeobox-containing genes that encode homeodomains highly similar to that of the Drosophila Distal-less gene, a gene that is required for limb development in the Drosophila embryo. The expression pattern of Dlx-5 in the developing chick limb bud suggests that it may be involved in several aspects of limb morphogenesis. Dlx-5 is expressed in the apical ectodermal ridge (AER) which directs the outgrowth and patterning of underlying limb mesoderm. During early limb development Dlx-5 is also expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the mid-proximal posterior margin that corresponds to the posterior necrotic zone. These mesodermal domains of Dlx-5 expression roughly correspond to the anterior and posterior boundaries of the progress zone, the group of highly proliferating undifferentiated mesodermal cells underneath the AER that will give rise to the skeletal elements of the limb and associated structures. The AER and anterior and posterior mesodermal domains of Dlx-5 expression are regions in which the homeobox-containing gene Msx-2 is also highly expressed, suggesting that Dlx-5 and Msx-2 might be involved in regulatory networks that control AER activity and demarcate the progress zone. In addition, Dlx-5 is expressed in high amounts by the differentiating cartilaginous skeletal elements of the limb, suggesting it may be involved in regulating the onset of limb cartilage differentiation.
Journal of Bone and Mineral Research | 2002
Tade Tadić; Milan Dodig; Ivana Erceg; Inga Marijanović; Mina Mina; Zana Kalajzic; Dimitrios Velonis; Mark S. Kronenberg; Robert A. Kosher; Deborah Ferrari; Alexander C. Lichtler
Our laboratory and others have shown that a homeodomain protein binding site plays an important role in transcription of the Col1a1 gene in osteoblasts. This suggests that homeodomain proteins have an important role in osteoblast differentiation. We have investigated the role of Dlx5 in osteoblastic differentiation. In situ hybridization studies indicated that Dlx5 is expressed in chick calvarial osteoblasts (cCOB) in vivo. Northern blot analysis indicated that Dlx5 expression in cultured cCOBs is induced concurrently with osteoblastic markers. To study the effect of overexpression of Dlx5 on osteoblast differentiation, we infected primary osteoblast cultures from 15‐day‐old embryonal chicken calvaria with replication competent retroviral vectors [RCASBP(A)] expressing Dlx5 or control replication competent avian splice acceptor brianhightiter polymerase subtype A [RCASBP(A)]. Expression of Col1a1, osteopontin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) occurred sooner and at higher levels in cultures infected with RCASBP(A)DLX5 than in RCASBP(A)‐infected cultures. Mineralization of Dlx5‐expressing cultures was evident by days 12‐14, and RCAS‐infected control osteoblasts did not begin to mineralize until day 17. Dlx5 also stimulated osteoblastic differentiation of calvarial cells that do not normally undergo osteoblastic differentiation in vitro. Our results suggest that Dlx5 plays an important role in inducing calvarial osteoblast differentiation.
Journal of Cellular Physiology | 2010
Guochun Gong; Deborah Ferrari; Caroline N. Dealy; Robert A. Kosher
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self‐repair. Because of their unlimited capacity for self‐renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF‐β1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC‐derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC‐derived progenitors in different phases of the chondrogenic lineage for cartilage repair. J. Cell. Physiol. 224: 664–671, 2010.
Developmental Dynamics | 1999
Deborah Ferrari; Amanda Harrington; Caroline N. Dealy; Robert A. Kosher
Dlx‐5 is a vertebrate homolog of the Drosophila Distal‐less gene, one of the first genetic signals for limb formation in the fly. In the present study we have explored the possible role of Dlx‐5 in limb initiation in the chick embryo. At stage 14 which is well before the initial formation of limb buds Dlx‐5 is highly and specifically expressed in the ectoderm of the presumptive wing and leg forming regions of the lateral plate, but not in the intervening non‐limb forming prospective flank. Thus, Dlx‐5 expression distinguishes the limb‐forming territories prior to limb budding, and is one of the first molecular markers of vertebrate limb initiation. Furthermore, Dlx‐5 expression is induced in the non‐limb‐forming flank within 12 hours after implantation of an FGF2‐soaked bead, a procedure that results in the induction of an ectopic limb. The rapid induction of Dlx‐5 expression in response to a signal which ultimately leads to supernumerary limb formation is consistent with a role for Dlx‐5 in limb initiation. We have also examined the expression of Dlx‐5 in the limb buds of amelic limbless mutant chick embryos, which undergo normal limb formation but do not form an AER and thus fail to undergo further outgrowth. Dlx‐5 is transiently expressed by the ectoderm of emergent limbless limb buds, consistent with a role for Dlx‐5 in limb initiation. Together, our results suggest that Dlx‐5 may be involved in the specification of the limb territories of the lateral plate, and in the initial formation of the limb bud from these regions. Dev Dyn 1999;216:10–15.
Developmental Genetics | 1999
Gail Lizarraga; Deborah Ferrari; Michael Kalinowski; Hideyo Ohuchi; Sumihare Noji; Robert A. Kosher; Caroline N. Dealy
FGF10 and FGF8, which are reciprocally expressed by the mesoderm and AER of the developing limb bud, have been implicated in limb initiation, outgrowth, and patterning. FGF10 and FGF8 signal through the FGFR2b and FGFR2c alternative splice isoforms, respectively [Ornitz DM, et al. 1996. J Biol Chem 271:15292-15297; Igarashi M, et al. 1998. J Biol Chem 273:13230-13235]. A paracrine signaling loop model has been proposed whereby FGF10 expressed by limb mesoderm signals via ectodermally restricted FGFR2b to regulate FGF8 expression by the apical ectoderm; in turn, FGF8 signals via mesodermally restricted FGFR2c to maintain FGF10 expression [Ohuchi H, et al. 1997. Development 124:2235-2244; Xu X, et al. 1998. Development 125:753-765]. To explore this model, we have examined FGFR2b and FGFR2c mRNA expression, using isoform-specific probes during the early stages of development of the chick limb when limb initiation, AER induction, and outgrowth are occurring. We have found that FGFR2b is expressed by limb ectoderm, including the AER, consistent with paracrine signaling of FGF10. By contrast, FGFR2c is expressed by both mesoderm and ectoderm, indicating that FGF8 has the potential to function in an autocrine as well as paracrine fashion. Indeed, as the limb grows out in response to the AER, FGFR2c expression attenuates in the mesoderm of the progress zone, but is maintained in the AER itself, arguing against exclusive paracrine signaling of FGF8 during limb outgrowth. We also report that transcripts for FGF10, FGFR2b, and FGFR2c are expressed normally in the limb buds of limbless mutant embryos, which fail to form an AER and do not express FGF8. Furthermore, we detect no mutations in exons specific for the FGFR2c or FGFR2b isoforms in limbless embryos. Since gene targeting has shown that expression of FGF8 in limb ectoderm depends on FGF10 [Min H, et al. 1998. Genes Dev 12:3156-3161; Sekine K, et al. 1999. Nature Genet 21:138-141], these results indicate that the product of the limbless gene is required for FGF10 to induce expression of FGF8.
Development Growth & Differentiation | 2007
Hsian-Jean Chin; Melanie C. Fisher; Yingcui Li; Deborah Ferrari; Chi-Kuang Leo Wang; Alexander C. Lichtler; Caroline N. Dealy; Robert A. Kosher
The homeodomain transcription factor Dlx5 has been implicated in the regulation of chondrocyte and osteoblast differentiation during endochondral ossification in the developing limb. In a gain‐of‐function approach to directly investigate the role of Dlx5 in chondrocyte maturation, we have used cartilage‐specific Col2a1‐Dlx5 promoter/enhancer constructs to target overexpression of Dlx5 to the differentiating cartilage models of the limbs of transgenic mice. Targeted overexpression of Dlx5 in cartilage rudiments results in the formation of shortened skeletal elements containing excessive numbers of hypertrophic chondrocytes and expanded domains of expression of Ihh and type X collagen, molecular markers of hypertrophic maturation. This suggests that hypertrophic differentiation is enhanced in response to Dlx5 misexpression. Skeletal elements overexpressing Dlx5 also exhibit a marked reduction in the zone of proliferation, indicating that overexpression of Dlx5 reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together these results indicate that Dlx5 is a positive regulator of chondrocyte maturation during endochondral ossification, and suggest that it regulates the process at least in part by promoting the conversion of immature proliferating chondrocytes into hypertrophying chondrocytes; a critical step in the maturation process.
Rheumatology: Current Research | 2012
Melanie C. Fisher; Deborah Ferrari; Yingcui Li; John B. Shepard; Sara E. Patterson; Nickesha Anderson; Caroline N. Dealy
Osteoarthritis is a debilitating joint disease present in epidemic proportions worldwide. Osteoarthritis results from degeneration of the articular cartilage of the joint surfaces due to acute trauma, or chronic wear and tear. Due to limited ability of cartilage to repair itself, and lack of available treatments, there is an urgent need for development of approaches to repair articular cartilage damage due to injury or osteoarthritic disease. Cell-based repair strategies are among the most promising of these approaches. Various adult cell sources for cartilage repair are proposed including autologous adult chondrocytes as well as adult Mesenchymal Stem Cells (MSC). Disadvantages such as destructive harvest protocols; poor proliferation, and particularly for MSC, considerable cellular heterogeneity, have limited success of these cell types for cartilage repair. Chondrogenic cells derived from human embryonic stem cells(hESC) offer a highly proliferative cell source, which when directed into the chondrogenic lineage, could provide an ideal source of cells for cartilage repair. Chondrogenic cells derived from human induced pluripotent stem cells(iPSC) offer additional advantages for patient-specific therapy. Recently protocols have been established for directed differentiation of hESC into the chondrogenic lineage. Harnessing the potential of hESC-derived chondrogenic cells will require comprehensive testing of their efficacy for in vivo cartilage repair, as well as considerations of safety and immunogenicity of the cells. Use of pro-chondrogenic factors and/or bioactive scaffolds may assist in optimizing cartilage repair by chondrogenic cells. Repair of cartilage damage in osteoarthritis is a special challenge because of the widespread damage and presence of signals and stressors which disrupt normal joint homeostasis. Particular promise in cell-based repair of osteoarthritis may be provided by chondrogenic progenitor cells which may mimic endogenous repair responses. This review discusses the current status of cell-based cartilage repair strategies and in particular the potential role of hESC-derived chondrocytes or chondroprogenitor cells for treatment of articular cartilage damage due to injury and osteoarthritis.
Developmental Biology | 1998
Deborah Ferrari; Alexander C. Lichtler; ZhongZong Pan; Caroline N. Dealy; William B. Upholt; Robert A. Kosher
Developmental Biology | 2004
Chi-Kuang Leo Wang; Minoru Omi; Deborah Ferrari; Hsu-Chen Cheng; Gail Lizarraga; Hsian-Jean Chin; William B. Upholt; Caroline N. Dealy; Robert A. Kosher