Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Holstein is active.

Publication


Featured researches published by Deborah Holstein.


Human Molecular Genetics | 2009

A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis.

Jeong Soon Park; Lokendra Kumar Sharma; Hongzhi Li; RuiHua Xiang; Deborah Holstein; Jun Wu; James D. Lechleiter; Susan L. Naylor; Janice Jianhong Deng; Jianxin Lu; Yidong Bai

Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.


PLOS ONE | 2010

Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs

Mariana Bollo; R. Madelaine Paredes; Deborah Holstein; Nadezhda N. Zheleznova; Patricia Camacho; James D. Lechleiter

Background The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. Methodology/Principal Findings Here, we demonstrate that calcineurin (CN), a Ca2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 α (eIF2-α) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [35S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aα in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-α. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca2+ increased. These data were obtained from [γ32P]-CLNX immunoprecipitations and Ca2+ imaging measurements. CLNX was dephosphorylated when Xenopus oocytes were treated with ER stressors. Dephosphorylation was pharmacologically blocked by treatment with CN inhibitors. Finally, evidence is presented that PERK phosphorylates CN-A at low resting levels of Ca2+. We further show that phosphorylated CN-A exhibits decreased phosphatase activity, consistent with this regulatory mechanism being shut down as ER homeostasis is re-established. Conclusions/Significance Our data suggest two new complementary roles for CN in the regulation of the early UPR. First, CN binding to PERK enhances inhibition of protein translation to allow the cell time to recover. The induction of the early UPR, as indicated by increased P-elF2α, is critically dependent on a translational increase in CN-Aα. Second, CN dephosphorylates CLNX and likely removes inhibition of SERCA2b activity, which would aid the rapid restoration of ER Ca2+ homeostasis.


Pancreas | 2002

Cerulein-induced acute pancreatitis in the rat is significantly ameliorated by treatment with MEK1/2 inhibitors U0126 and PD98059.

Antoinette P. Clemons; Deborah Holstein; Aurelio Galli; Christine Saunders

Introduction Both cerulein and cholecystokinin activate mitogen-activated protein (MAP) kinase (ERK1/2) in vivo and in isolated pancreatic acini. Aims and Methodology ERK1/2 in pancreas homogenates was activated in rats rendered pancreatitic by subcutaneous injections of cerulein (5 &mgr;g/kg per hour). To determine if blocking ERK1/2 activity might rescue cerulein-induced acute pancreatitis, the “MAP kinase kinase” (also known as MEK1/2) inhibitors PD98059 and U0126 were administered in vivo. Results In rats pretreated with PD98059 (10 mg/kg per i.v. injection) or U0126 (5 mg/kg per i.v. injection) 30 minutes before and then together with hourly cerulein injections for 3 hours, pancreatitis was significantly attenuated on the basis of pancreatic wet weight and histology. Serum amylase concentration was significantly reduced when PD98059 was administered intraperitoneally (10 mg/kg per intraperitoneal injection). PD98059 also ameliorated pancreatitis over a 6-hour cerulein time course. The phosphorylation of pancreatic ERK1/2 was attenuated in PD98059- and U0126-treated animals at both 30 minutes and 3 hours after cerulein injection. Rats rendered neutropenic with vinblastine and pretreated with U0126 still showed attenuated manifestations of cerulein-induced acute pancreatitis, a finding suggesting that pancreatic ERK1/2 is mostly responsible for the effect, rather than infiltrating neutrophils. Conclusions Inhibition of pancreatic ERK1/2 in vivo affords significant protection against inflammatory sequelae following cerulein-induced acute pancreatitis.


PLOS ONE | 2010

Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria

Wei Zheng; Lora Talley Watts; Deborah Holstein; Suresh I. Prajapati; Charles Keller; Eileen H. Grass; Christi A. Walter; James D. Lechleiter

Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5′ diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y1R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP3)-dependent Ca2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.


Free Radical Biology and Medicine | 2009

Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria

Hanyu Liang; Qitao Ran; Youngmok C. Jang; Deborah Holstein; James D. Lechleiter; Tiffany McDonald-Marsh; Andrej Musatov; Wook Song; Holly Van Remmen; Arlan Richardson

Glutathione peroxidase 4 (Gpx4) is a unique antioxidant enzyme that repairs oxidative damage to biomembranes. In this study, we examined the effects of Gpx4 on the release of various apoptogenic proteins from mitochondria using transgenic mice overexpressing Gpx4 [Tg(GPX4(+/0))] and mice deficient in Gpx4 (Gpx4+/- mice). Diquat exposure triggered apoptosis that occurred through an intrinsic pathway and resulted in the mitochondrial release of cytochrome c (Cyt c), Smac/DIABLO, and Omi/HtrA2 in the liver of wild-type (Wt) mice. Liver apoptosis and Cyt c release were suppressed in Tg(GPX4(+/0)) mice but exacerbated in Gpx4+/- mice; however, neither the Tg(GPX4(+/0)) nor the Gpx4+/- mice showed any alterations in the levels of Smac/DIABLO or Omi/HtrA2 released from mitochondria. Submitochondrial fractionation data showed that Smac/DIABLO and Omi/HtrA2 existed primarily in the intermembrane space and matrix, whereas Cyt c and Gpx4 were both associated with the inner membrane. In addition, diquat exposure induced cardiolipin peroxidation in the liver of Wt mice; the levels of cardiolipin peroxidation were reduced in Tg(GPX4(+/0)) mice but elevated in Gpx4+/- mice. These data suggest that Gpx4 differentially regulates apoptogenic protein release owing to its inner membrane location in mitochondria and its ability to repair cardiolipin peroxidation.


Journal of Cerebral Blood Flow and Metabolism | 2013

P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse.

Wei Zheng; Lora Talley Watts; Deborah Holstein; Jimmy Wewer; James D. Lechleiter

Glia-based neuroprotection strategies are emerging as promising new avenues to treat brain damage. We previously reported that activation of the glial-specific purinergic receptor, P2Y1R, reduces both astrocyte swelling and brain infarcts in a photothrombotic mouse model of stroke. These restorative effects were dependent on astrocyte mitochondrial metabolism. Here, we extend these findings and report that P2Y1R stimulation with the purinergic ligand 2-methylthioladenosine 5′ diphosphate (2MeSADP) reduces and partially reverses neuronal damage induced by photothrombosis. In vivo neuronal morphology was confocally imaged in transgenic mice expressing yellow fluorescent protein under the control of the Thy1 promoter. Astrocyte mitochondrial membrane potentials, monitored with the potential sensitive dye tetra-methyl rhodamine methyl ester, were depolarized after photothrombosis and subsequently repolarized when P2Y1Rs were stimulated. Mice deficient in the astrocyte-specific type 2 inositol 1,4,5 trisphosphate (IP3) receptor exhibited aggravated ischemic dendritic damage after photothrombosis. Treatment of these mice with 2MeSADP did not invoke an intracellular Ca2+ response, did not repolarize astrocyte mitochondria, and did not reduce or partially reverse neuronal lesions induced by photothrombotic stroke. These results demonstrate that IP3-Ca2+ signaling in astrocytes is not only critical for P2Y1R-enhanced protection, but suggest that IP3-Ca2+ signaling is also a key component of endogenous neuroprotection.


Neurobiology of Aging | 2007

Ca2+ signaling, mitochondria and sensitivity to oxidative stress in aging astrocytes.

Da Ting Lin; Jun Wu; Deborah Holstein; Geeta Upadhyay; Wendy Rourk; Elizabeth Muller; James D. Lechleiter

Age-related changes in astrocytes that could potentially affect neuroprotection have been largely unexplored. To test whether astrocyte function was diminished during the aging process, we examined cell growth, Ca2+ signaling, mitochondrial membrane potential (DeltaPsi) and neuroprotection of NGF-differentiated PC12 cells. We observed that cell growth was significantly slower for astrocytes cultured from old (26-29 months) mice as compared to young (4-6 months) mice. DeltaPsis in old astrocytes were also more depolarized (lower) than in young astrocytes and old astrocytes showed greater sensitivity to the oxidant tert-butyl hydrogen peroxide (t-BuOOH). ATP-induced Ca2+ responses in old astrocytes were consistently larger in amplitude and more frequently oscillatory than in young astrocytes, which may be attributable to lower mitochondrial Ca2+ sequestration. Finally, NGF-differentiated PC12 cells that were co-cultured with old astrocytes were significantly more sensitive to t-BuOOH treatment than co-cultures of NGF-differentiated PC12 cells with young astrocytes. Together, these data demonstrate that astrocyte physiology is significantly altered during the aging process and that the astrocytes ability to protect neurons is compromised.


Apoptosis | 2007

Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria

Nuttawut Saelim; Deborah Holstein; Estrella S. Chocron; Patricia Camacho; James D. Lechleiter

We recently reported that shortened thyroid hormone receptor isoforms (TRs) can target mitochondria and acutely modulate inositol 1,4,5 trisphosphate (IP3)-mediated Ca2+ signaling when activated by thyroid hormone 3,5,3′-tri-iodothyronine (T3). Stimulation occurs via an increase in mitochondrial metabolism that is independent of transcriptional activity. Here, we present evidence that T3-bound xTRβA1s inhibit apoptotic activity mediated by cytochrome c release. An assay for apoptotic potency was modified to measure the ability of Xenopus oocyte extracts to induce morphological changes in isolated liver nuclei. Apoptotic potency was significantly decreased when oocyte extract was prepared from xTRβA1 expressing oocytes and treated with T3. The ability of T3 treatment to inhibit apoptosis was dependent on the expression of xTRβA1s in the mitochondrial fraction, not in the cytosolic fraction. T3 treatment also increased the membrane potential of isolated mitochondria prepared from oocytes expressing xTRβA1s but not from wildtype controls. We conclude that T3 acutely regulates cytochrome c release in a potential dependent manner by activating TRs located within mitochondria.


Cell Calcium | 2013

Luminal Ca2+ depletion during the unfolded protein response in Xenopus oocytes: cause and consequence.

R. Madelaine Paredes; Mariana Bollo; Deborah Holstein; James D. Lechleiter

The endoplasmic reticulum (ER) is a Ca(2+) storing organelle that plays a critical role in the synthesis, folding and post-translational modifications of many proteins. The ER enters into a condition of stress when the load of newly synthesized proteins exceeds its folding and processing capacity. This activates a signal transduction pathway called the unfolded protein response (UPR) that attempts to restore homeostasis. The precise role of ER Ca(2+) in the initiation of the UPR has not been defined. Specifically, it has not been established whether ER Ca(2+) dysregulation is a cause or consequence of ER stress. Here, we report that partial depletion of ER Ca(2+) stores induces a significant induction of the UPR, and leads to the retention of a normally secreted protein Carboxypeptidase Y. Moreover, inhibition of protein glycosylation by tunicamycin rapidly induced an ER Ca(2+) leak into the cytosol. However, blockade of the translocon with emetine inhibited the tunicamycin-induced Ca(2+) release. Furthermore, emetine treatment blocked elF2α phosphorylation and reduced expression of the chaperone BiP. These findings suggest that Ca(2+) may be both a cause and a consequence of ER protein misfolding. Thus, it appears that ER Ca(2+) leak is a significant co-factor for the initiation of the UPR.


Molecular Endocrinology | 2012

The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism.

E. Sandra Chocron; Naomi L. Sayre; Deborah Holstein; Nuttawut Saelim; Jamal A. Ibdah; Lily Q. Dong; Xuguang Zhu; Sheue Yann Cheng; James D. Lechleiter

We previously demonstrated that the thyroid hormone, T(3), acutely stimulates mitochondrial metabolism in a thyroid hormone receptor (TR)-dependent manner. T(3) has also recently been shown to stimulate mitochondrial fatty acid oxidation (FAO). Here we report that TR-dependent stimulation of metabolism is mediated by the mitochondrial trifunctional protein (MTP), the enzyme responsible for long-chain FAO. Stimulation of FAO was significant in cells that expressed a nonnuclear amino terminus shortened TR isoform (sTR(43)) but not in adult fibroblasts cultured from mice deficient in both TRα and TRβ isoforms (TRα(-/-)β(-/-)). Mouse embryonic fibroblasts deficient in MTP (MTP(-/-)) did not support T(3)-stimulated FAO. Inhibition of fatty-acid trafficking into mitochondria using the AMP-activated protein kinase inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or the carnitine palmitoyltransferase 1 inhibitor etomoxir prevented T(3)-stimulated FAO. However, T(3) treatment could increase FAO when AMP-activated protein kinase was maximally activated, indicating an alternate mechanism of T(3)-stimulated FAO exists, even when trafficking is presumably high. MTPα protein levels and higher molecular weight complexes of MTP subunits were increased by T(3) treatment. We suggest that T(3)-induced increases in mitochondrial metabolism are at least in part mediated by a T(3)-shortened TR isoform-dependent stabilization of the MTP complex, which appears to lower MTP subunit turnover.

Collaboration


Dive into the Deborah Holstein's collaboration.

Top Co-Authors

Avatar

James D. Lechleiter

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Mariana Bollo

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Naomi L. Sayre

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Da Ting Lin

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Janice Jianhong Deng

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jun Wu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Lora Talley Watts

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Patricia Camacho

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge