Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Camacho is active.

Publication


Featured researches published by Patricia Camacho.


Journal of Cell Biology | 2004

Ca2+-dependent redox modulation of SERCA 2b by ERp57

Yun Li; Patricia Camacho

We demonstrated previously that calreticulin (CRT) interacts with the lumenal COOH-terminal sequence of sarco endoplasmic reticulum (ER) calcium ATPase (SERCA) 2b to inhibit Ca2+ oscillations. Work from other laboratories demonstrated that CRT also interacts with the ER oxidoreductase, ER protein 57 (also known as ER-60, GRP58; ERp57) during folding of nascent glycoproteins. In this paper, we demonstrate that ERp57 overexpression reduces the frequency of Ca2+ oscillations enhanced by SERCA 2b. In contrast, overexpression of SERCA 2b mutants defective in cysteines located in intralumenal loop 4 (L4) increase Ca2+ oscillation frequency. In vitro, we demonstrate a Ca2+-dependent and -specific interaction between ERp57 and L4. Interestingly, ERp57 does not affect the activity of SERCA 2a or SERCA 2b mutants lacking the CRT binding site. Overexpression of CRT domains that disrupt the interaction of CRT with ERp57 behave as dominant negatives in the Ca2+ oscillation assay. Our results suggest that ERp57 modulates the redox state of ER facing thiols in SERCA 2b in a Ca2+-dependent manner, providing dynamic control of ER Ca2+ homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Identification and characterization of an amino acid transporter expressed differentially in liver.

Sumin Gu; Hywel Llewelyn Roderick; Patricia Camacho; Jean X. Jiang

Cellular metabolic needs are fulfilled by transport of amino acids across the plasma membrane by means of specialized transporter proteins. Although many of the classical amino acid transporters have been characterized functionally, less than half of these proteins have been cloned. In this report, we identify and characterize a cDNA encoding a plasma membrane amino acid transporter. The deduced amino acid sequence is 505 residues and is highly hydrophobic with the likely predicted structure of 9 transmembrane domains, which putatively place the amino terminus in the cytoplasm and the carboxy terminus on the cell surface. Expression of the cRNA in Xenopus laevis oocytes revealed strong transport activities specific for histidine and glutamine. This protein is a Na(+)- and pH-dependent transporter and tolerates substitution of Na(+) by Li(+). Furthermore, this transporter is not an obligatory exchanger because efflux occurs in the absence of influx. This transporter is expressed predominantly in the liver, although it is also present in the kidney, brain, and heart. In the liver, it is located in the plasma membrane of hepatocytes, and the strongest expression was detected in those adjacent to the central vein, gradually decreasing towards the portal tract. Because this protein displays functional similarities to the N-system amino acid transport, we have termed it mNAT, for murine N-system amino acid transporter. This is the first transporter gene identified within the N-system, one of the major amino acid transport systems in the body. The expression pattern displayed by mNAT suggests a potential role in hepatocyte physiology.


Journal of Biological Chemistry | 2004

Rho small GTPases activate the epithelial Na+ channel

Alexander Staruschenko; Amy Nichols; Jorge L. Medina; Patricia Camacho; Nadezhda N. Zheleznova; James D. Stockand

Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na+ channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P2 levels promoting channel insertion into the plasma membrane.


PLOS ONE | 2010

Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs

Mariana Bollo; R. Madelaine Paredes; Deborah Holstein; Nadezhda N. Zheleznova; Patricia Camacho; James D. Lechleiter

Background The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. Methodology/Principal Findings Here, we demonstrate that calcineurin (CN), a Ca2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 α (eIF2-α) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [35S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aα in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-α. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca2+ increased. These data were obtained from [γ32P]-CLNX immunoprecipitations and Ca2+ imaging measurements. CLNX was dephosphorylated when Xenopus oocytes were treated with ER stressors. Dephosphorylation was pharmacologically blocked by treatment with CN inhibitors. Finally, evidence is presented that PERK phosphorylates CN-A at low resting levels of Ca2+. We further show that phosphorylated CN-A exhibits decreased phosphatase activity, consistent with this regulatory mechanism being shut down as ER homeostasis is re-established. Conclusions/Significance Our data suggest two new complementary roles for CN in the regulation of the early UPR. First, CN binding to PERK enhances inhibition of protein translation to allow the cell time to recover. The induction of the early UPR, as indicated by increased P-elF2α, is critically dependent on a translational increase in CN-Aα. Second, CN dephosphorylates CLNX and likely removes inhibition of SERCA2b activity, which would aid the rapid restoration of ER Ca2+ homeostasis.


Journal of Biological Chemistry | 2001

Characterization of an N-system amino acid transporter expressed in retina and its involvement in glutamine transport

Sumin Gu; Hywel Llewelyn Roderick; Patricia Camacho; Jean X. Jiang

We report here on the characterization of a mouse N-system amino acid transporter protein, which is involved in the transport of glutamine. This protein of 485 amino acids shares 52% sequence homology with an N-system amino acid transporter, mouse N-system amino acid transporter (mNAT) and its orthologs. Because this protein shares a high degree of sequence homology and functional similarity to mNAT, we named it mNAT2. mNAT2 is predominately expressed in the retina and to a slightly lesser extent in the brain. In the retina, it is located in the axons of ganglion cells in the nerve fiber layer and in the bundles of the optic nerve. Functional analysis of mNAT2 expressed in Xenopus oocytes revealed that the strongest transport activities were specific forl-glutamine. In addition, mNAT2 is a Na+- and pH-dependent, high affinity transporter and partially tolerates substitution of Na+ by Li+. Additionally, mNAT2 functions as a carrier-mediated transporter that facilitates efflux. The unique expression pattern and selective glutamine transport properties of mNAT2 suggest that it plays a specific role in the uptake of glutamine involved in the generation of the neurotransmitter glutamate in retina.


Biophysical Journal | 2003

Modeling the dependence of the period of intracellular Ca2+ waves on SERCA expression.

Martin Falcke; Yun Li; James D. Lechleiter; Patricia Camacho

Contrary to intuitive expectations, overexpression of sarco-endoplasmic reticulum (ER) Ca(2+) ATPases (SERCAs) in Xenopus oocytes leads to a decrease in the period and an increase in the amplitude of intracellular Ca(2+) waves. Here we examine these experimental findings by modeling Ca(2+) release using a modified Othmer-Tang-model. An increase in the period and a reduction in the amplitude of Ca(2+) wave activity are obtained when increases in SERCA density are simulated while keeping all other parameters of the model constant. However, Ca(2+) wave period can be reduced and the wave amplitude and velocity can be significantly increased when an increase in the luminal ER Ca(2+) concentration due to SERCA overexpression is incorporated into the model. Increased luminal Ca(2+) occurs because increased SERCA activity lowers cytosolic Ca(2+), which is partially replenished by Ca(2+) influx across the plasma membrane. These simulations are supported by experimental data demonstrating higher luminal Ca(2+) levels, decreased periods, increased amplitude, and increased velocity of Ca(2+) waves in response to increased SERCA density.


Journal of Cell Biology | 2004

Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor

Nuttawut Saelim; Linu M. John; Jun Wu; Jeong Soon Park; Yidong Bai; Patricia Camacho; James D. Lechleiter

Thyroid hormone 3,5,3′-tri-iodothyronine (T3) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca2+ signaling by T3-bound TRs. Treatment of Xenopus thyroid hormone receptor beta subtype A1 (xTRβA1) expressing oocytes with T3 for 10 min increased inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ wave periodicity. Coexpression of TRβA1 with retinoid X receptor did not enhance regulation. Deletion of the DNA binding domain and the nuclear localization signal of the TRβA1 eliminated transcriptional activity but did not affect the ability to regulate Ca2+ signaling. T3-bound TRβA1 regulation of Ca2+ signaling could be inhibited by ruthenium red treatment, suggesting that mitochondrial Ca2+ uptake was required for the mechanism of action. Both xTRβA1 and the homologous shortened form of rat TRα1 (rTRαΔF1) localized to the mitochondria and increased O2 consumption, whereas the full-length rat TRα1 did neither. Furthermore, only T3-bound xTRβA1 and rTRαΔF1 affected Ca2+ wave activity. We conclude that T3-bound mitochondrial targeted TRs acutely modulate IP3-mediated Ca2+ signaling by increasing mitochondrial metabolism independently of transcriptional activity.


The Journal of Physiology | 2001

Control of IP3-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin

Linu M. John; Monica Mosquera-Caro; Patricia Camacho; James D. Lechleiter

1 Elementary events of Ca2+ release (Ca2+ puffs) can be elicited from discrete clusters of inositol 1,4,5 trisphosphate receptors (IP3Rs) at low concentrations of IP3. Ca2+ puffs have rarely been observed unless elicited by either hormone treatment or introduction of IP3 into the cell. However, cells appear to have sufficient concentrations of IP3 (0.1‐3.0 μM) to induce Ca2+ release under resting conditions. 2 Here, we investigated Ca2+ puff activity in non‐stimulated Xenopus oocytes using confocal microscopy. The fluorescent Ca2+ dye indicators Calcium Green 1 and Oregon Green 488 BAPTA‐2 were injected into oocytes to monitor basal Ca2+ activity. 3 In this preparation, injection or overexpression of parvalbumin, an EF‐hand Ca2+‐binding protein (CaBP), induced Ca2+ puffs in resting Xenopus oocytes. This activity was inhibited by heparin, an IP3R channel blocker, and by mutation of the Ca2+‐binding sites in parvalbumin. 4 Ca2+ puff activity was also evoked by injection of low concentrations of the Ca2+ chelator EGTA, but not by calbindin D28k, another member of the EF‐hand CaBP superfamily. 5 BAPTA and the Ca2+ indicator dye Oregon Green 488 BAPTA‐1 evoked Ca2+ puff activity, while the dextran conjugate of Oregon Green 488 BAPTA‐1 did not. These data indicate that a Ca2+ buffer must be mobile in order to increase Ca2+ puff activity. 6 Together, the data indicate that some IP3Rs spontaneously release Ca2+ under resting concentrations of IP3. These elementary Ca2+ events appear to be below the level of detection of current imaging techniques. We suggest that parvalbumin evokes Ca2+ puffs by coordinating the activity of elementary IP3R channel openings. 7 We conclude that Ca2+ release can be evoked not only by hormone‐induced increases in IP3, but also by expression of mobile cytosolic CaBPs under resting concentrations of IP3.


Apoptosis | 2007

Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria

Nuttawut Saelim; Deborah Holstein; Estrella S. Chocron; Patricia Camacho; James D. Lechleiter

We recently reported that shortened thyroid hormone receptor isoforms (TRs) can target mitochondria and acutely modulate inositol 1,4,5 trisphosphate (IP3)-mediated Ca2+ signaling when activated by thyroid hormone 3,5,3′-tri-iodothyronine (T3). Stimulation occurs via an increase in mitochondrial metabolism that is independent of transcriptional activity. Here, we present evidence that T3-bound xTRβA1s inhibit apoptotic activity mediated by cytochrome c release. An assay for apoptotic potency was modified to measure the ability of Xenopus oocyte extracts to induce morphological changes in isolated liver nuclei. Apoptotic potency was significantly decreased when oocyte extract was prepared from xTRβA1 expressing oocytes and treated with T3. The ability of T3 treatment to inhibit apoptosis was dependent on the expression of xTRβA1s in the mitochondrial fraction, not in the cytosolic fraction. T3 treatment also increased the membrane potential of isolated mitochondria prepared from oocytes expressing xTRβA1s but not from wildtype controls. We conclude that T3 acutely regulates cytochrome c release in a potential dependent manner by activating TRs located within mitochondria.


Journal of Cell Biology | 2003

Malaria parasites solve the problem of a low calcium environment

Patricia Camacho

The parasite responsible for malaria, Plasmodium falciparum, spends much of its life in the RBC under conditions of low cytosolic Ca2+. This poses an interesting problem for a parasite that depends on a Ca2+ signaling system to carry out its vital functions. This long standing puzzle has now been resolved by a clever series of experiments performed by Gazarini et al. (2003). Using advances in fluorescent Ca2+ imaging (Grynkiewics, G., M. Poenie, and R.Y. Tsien. 1985. J. Biol. Chem. 260:3440–3450; Hofer, A., and T. Machen. 1994. Am. J. Physiol. 267:G442–G451; Hofer, A.M., B. Landolfi, L. Debellis, T. Pozzan, and S. Curci. 1998. EMBO J. 17:1986–1995), these authors have elucidated the source of the Ca2+ gradient that allows the accumulation of intracellular Ca2+ within the parasite.

Collaboration


Dive into the Patricia Camacho's collaboration.

Top Co-Authors

Avatar

James D. Lechleiter

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Llewelyn Roderick

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yun Li

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jean X. Jiang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sumin Gu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Deborah Holstein

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Hywel Llewelyn Roderick

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jun Wu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge