Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Morosini is active.

Publication


Featured researches published by Deborah Morosini.


Cancer Discovery | 2015

Activation of MET via Diverse Exon 14 Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors

Garrett Michael Frampton; Siraj M. Ali; Mark Rosenzweig; Juliann Chmielecki; Xinyuan Lu; Todd Michael Bauer; Mikhail Akimov; Jose A. Bufill; Carrie B. Lee; David Jentz; Rick Hoover; Sai-Hong Ignatius Ou; Ravi Salgia; Tim Brennan; Zachary R. Chalmers; Savina Jaeger; Alan Huang; Julia A. Elvin; Rachel L. Erlich; Alex Fichtenholtz; Kyle Gowen; Joel Greenbowe; Adrienne Johnson; Depinder Khaira; Caitlin McMahon; Eric M. Sanford; Steven Roels; Jared White; Joel Greshock; Robert Schlegel

UNLABELLED Focal amplification and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 (METex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across tumor types are unknown. Here, we report analysis of tumor genomic profiles from 38,028 patients to identify 221 cases with METex14 mutations (0.6%), including 126 distinct sequence variants. METex14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%), brain glioma (0.4%), and tumors of unknown primary origin (0.4%). Further in vitro studies demonstrate sensitivity to MET inhibitors in cells harboring METex14 alterations. We also report three new patient cases with METex14 alterations in lung or histiocytic sarcoma tumors that showed durable response to two different MET-targeted therapies. The diversity of METex14 mutations indicates that diagnostic testing via comprehensive genomic profiling is necessary for detection in a clinical setting. SIGNIFICANCE Here we report the identification of diverse exon 14 splice site alterations in MET that result in constitutive activity of this receptor and oncogenic transformation in vitro. Patients whose tumors harbored these alterations derived meaningful clinical benefit from MET inhibitors. Collectively, these data support the role of METex14 alterations as drivers of tumorigenesis, and identify a unique subset of patients likely to derive benefit from MET inhibitors.


Oncologist | 2014

New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing

Jeffrey S. Ross; Kai Wang; Rami N. Al-Rohil; Janne V. Rand; David M. Jones; Hwa J. Lee; Christine E. Sheehan; Geoff Otto; Gary A. Palmer; Roman Yelensky; Doron Lipson; Deborah Morosini; Matthew J. Hawryluk; Daniel V.T. Catenacci; Vincent A. Miller; Chaitanya Churi; Siraj M. Ali; Philip J. Stephens

BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a subtype of primary liver cancer that is rarely curable by surgery and is rapidly increasing in incidence. Relapsed ICC has a poor prognosis, and current systemic nontargeted therapies are commonly extrapolated from those used in other gastrointestinal malignancies. We hypothesized that genomic profiling of clinical ICC samples would identify genomic alterations that are linked to targeted therapies and that could facilitate a personalized approach to therapy. METHODS DNA sequencing of hybridization-captured libraries was performed for 3,320 exons of 182 cancer-related genes and 36 introns of 14 genes frequently rearranged in cancer. Sample DNA was isolated from 40 μm of 28 formalin-fixed paraffin-embedded ICC specimens and sequenced to high coverage. RESULTS The most commonly observed alterations were within ARID1A (36%), IDH1/2 (36%), and TP53 (36%) as well as amplification of MCL1 (21%). Twenty cases (71%) harbored at least one potentially actionable alteration, including FGFR2 (14%), KRAS (11%), PTEN (11%), CDKN2A (7%), CDK6 (7%), ERBB3 (7%), MET (7%), NRAS (7%), BRCA1 (4%), BRCA2 (4%), NF1 (4%), PIK3CA (4%), PTCH1 (4%), and TSC1 (4%). Four (14%) of the ICC cases featured novel gene fusions involving the tyrosine kinases FGFR2 and NTRK1 (FGFR2-KIAA1598, FGFR2-BICC1, FGFR2-TACC3, and RABGAP1L-NTRK1). CONCLUSION Two thirds of patients in this study harbored genomic alterations that are associated with targeted therapies and that have the potential to personalize therapy selection for to individual patients.


Cancer Discovery | 2015

An Oncogenic NTRK Fusion in a Patient with Soft-Tissue Sarcoma with Response to the Tropomyosin-Related Kinase Inhibitor LOXO-101

Robert C. Doebele; Lara E. Davis; Aria Vaishnavi; Anh T. Le; Adriana Estrada-Bernal; Stephen Keysar; Antonio Jimeno; Marileila Varella-Garcia; Dara L. Aisner; Yali Li; Philip J. Stephens; Deborah Morosini; Brian B. Tuch; Michele Fernandes; Nisha Nanda; Jennifer A. Low

UNLABELLED Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways. These TRK fusions occur rarely, but in a diverse spectrum of tumor histologies. LOXO-101 is an orally administered inhibitor of the TRK kinase and is highly selective only for the TRK family of receptors. Preclinical models of LOXO-101 using TRK-fusion-bearing human-derived cancer cell lines demonstrate inhibition of the fusion oncoprotein and cellular proliferation in vitro, and tumor growth in vivo. The tumor of a 41-year-old woman with soft-tissue sarcoma metastatic to the lung was found to harbor an LMNA-NTRK1 gene fusion encoding a functional LMNA-TRKA fusion oncoprotein as determined by an in situ proximity ligation assay. In a phase I study of LOXO-101 (ClinicalTrials.gov no. NCT02122913), this patients tumors underwent rapid and substantial tumor regression, with an accompanying improvement in pulmonary dyspnea, oxygen saturation, and plasma tumor markers. SIGNIFICANCE TRK fusions have been deemed putative oncogenic drivers, but their clinical significance remained unclear. A patient with a metastatic soft-tissue sarcoma with an LMNA-NTRK1 fusion had rapid and substantial tumor regression with a novel, highly selective TRK inhibitor, LOXO-101, providing the first clinical evidence of benefit from inhibiting TRK fusions.


Cancer Research | 2011

Antiangiogenic and Antimetastatic Activity of JAK Inhibitor AZD1480

Hong Xin; Andreas Herrmann; Karen L. Reckamp; Wang Zhang; Sumanta K. Pal; Michael Hedvat; Chunyan Zhang; Wei Liang; Anna Scuto; Shaobu Weng; Deborah Morosini; Zhu A. Cao; Michael Zinda; Robert A. Figlin; Dennis Huszar; Richard Jove; Hua Yu

STAT3 has important functions in both tumor cells and the tumor microenvironment to facilitate cancer progression. The STAT regulatory kinase Janus-activated kinase (JAK) has been strongly implicated in promoting oncogenesis of various solid tumors, including the use of JAK kinase inhibitors such as AZD1480. However, direct evidence that JAK drives STAT3 function and cancer pathogenesis at the level of the tumor microenvironment is yet to be established clearly. In this study, we show that AZD1480 inhibits STAT3 in tumor-associated myeloid cells, reducing their number and inhibiting tumor metastasis. Myeloid cell-mediated angiogenesis was also diminished by AZD1480, with additional direct inhibition of endothelial cell function in vitro and in vivo. AZD1480 blocked lung infiltration of myeloid cells and formation of pulmonary metastases in both mouse syngeneic experimental and spontaneous metastatic models. Furthermore, AZD1480 reduced angiogenesis and metastasis in a human xenograft tumor model. Although the effects of AZD1480 on the tumor microenvironment were important for the observed antiangiogenic activity, constitutive activation of STAT3 in tumor cells themselves could block these antiangiogenic effects, showing the complexity of the JAK/STAT signaling network in tumor progression. Together, our results indicated that AZD1480 can effectively inhibit tumor angiogenesis and metastasis mediated by STAT3 in stromal cells as well as tumor cells.


Blood | 2016

Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting

Jie He; Omar Abdel-Wahab; Michelle Nahas; Kai Wang; Raajit Rampal; Andrew M. Intlekofer; Jay Patel; Andrei V. Krivstov; Garrett Michael Frampton; Lauren E. Young; Shan Zhong; Mark Bailey; Jared White; Steven Roels; Jason Deffenbaugh; Alex Fichtenholtz; Tim Brennan; Mark Rosenzweig; Kimberly Pelak; Kristina M. Knapp; Kristina Brennan; Amy Donahue; Geneva Young; Lazaro Garcia; Selmira T. Beckstrom; Mandy Zhao; Emily White; Vera Banning; Jamie Buell; Kiel Iwanik

The spectrum of somatic alterations in hematologic malignancies includes substitutions, insertions/deletions (indels), copy number alterations (CNAs), and a wide range of gene fusions; no current clinically available single assay captures the different types of alterations. We developed a novel next-generation sequencing-based assay to identify all classes of genomic alterations using archived formalin-fixed paraffin-embedded blood and bone marrow samples with high accuracy in a clinically relevant time frame, which is performed in our Clinical Laboratory Improvement Amendments-certified College of American Pathologists-accredited laboratory. Targeted capture of DNA/RNA and next-generation sequencing reliably identifies substitutions, indels, CNAs, and gene fusions, with similar accuracy to lower-throughput assays that focus on specific genes and types of genomic alterations. Profiling of 3696 samples identified recurrent somatic alterations that impact diagnosis, prognosis, and therapy selection. This comprehensive genomic profiling approach has proved effective in detecting all types of genomic alterations, including fusion transcripts, which increases the ability to identify clinically relevant genomic alterations with therapeutic relevance.


JAMA Oncology | 2015

Comprehensive Genomic Profiling of Carcinoma of Unknown Primary Site: New Routes to Targeted Therapies

Jeffrey S. Ross; Kai Wang; Geoff Otto; Emily White; Kiel Iwanik; Gary A. Palmer; Roman Yelensky; Doron Lipson; Juliann Chmielecki; Rachel L. Erlich; Andrew Rankin; Siraj M. Ali; Julia A. Elvin; Deborah Morosini; Vincent A. Miller; Philip J. Stephens

IMPORTANCE For carcinoma of unknown primary site (CUP), determining the primary tumor site may be uninformative and often does not improve outcome. OBJECTIVE To discover opportunities for targeted therapies in patients with CUP not currently searched for in routine practice. DESIGN, SETTING, AND PARTICIPANTS Comprehensive genomic profiling on 200 CUP formalin-fixed paraffin-embedded specimens (mean, 756× coverage) using the hybrid-capture-based FoundationOne assay at academic and community oncology clinics. MAIN OUTCOMES AND MEASURES Presence of targetable genomic alterations (GAs) in CUP and responses to targeted therapies. RESULTS There were 125 adenocarcinomas of unknown primary site (ACUPs) and 75 carcinomas of unknown primary site without features of adenocarcinoma (non-ACUPs). At least 1 GA was found in 192 (96%) of CUP specimens, with a mean (SD) of 4.2 (2.8) GAs per tumor. The most frequent GAs were in TP53 (110 [55%]), KRAS (40 [20%]), CDKN2A (37 [19%]), MYC (23 [12%]), ARID1A (21 [11%]), MCL1 (19 [10%]), PIK3CA (17 [9%]), ERBB2 (16 [8%]), PTEN (14 [7%]), EGFR (12 [6%]), SMAD4 (13 [7%]), STK11 (13 [7%]), SMARCA4 (12 [6%]), RB1 (12 [6%]), RICTOR (12 [6%]), MLL2 (12 [6%]), BRAF (11 [6%]), and BRCA2 (11 [6%]). One or more potentially targetable GAs were identified in 169 of 200 (85%) CUP specimens. Mutations or amplifications of ERBB2 were more frequent in ACUPs (13 [10%]) than in non-ACUPs (3 [4%]). Alterations of EGFR (10 [8%] vs 2 [3%]) and BRAF (8 [6%] vs 3 [4%]) were more common in ACUPs than in non-ACUPs. Strikingly, clinically relevant alterations in the receptor tyrosine kinase (RTK)/Ras signaling pathway including alterations in ALK, ARAF, BRAF, EGFR, FGFR1, FGFR2, KIT, KRAS, MAP2K1, MET, NF1, NF2, NRAS, RAF1, RET, and ROS1 were found in 90 (72%) ACUPs but in only 29 (39%) non-ACUPs (P < .001). CONCLUSIONS AND RELEVANCE Almost all CUP samples harbored at least 1 clinically relevant GA with potential to influence and personalize therapy. The ACUP tumors were more frequently driven by GAs in the highly druggable RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway than the non-ACUP tumors. Comprehensive genomic profiling can identify novel treatment paradigms to address the limited options and poor prognoses of patients with CUP.


Journal of Clinical Pathology | 2014

Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer.

J.S. Ross; Kai Wang; O R Elkadi; Ashley J. Tarasen; L Foulke; Christine E. Sheehan; Geoff Otto; Gary A. Palmer; Roman Yelensky; Doron Lipson; Juliann Chmielecki; Siraj M. Ali; Julia A. Elvin; Deborah Morosini; V.A. Miller; P.J. Stephens

Aims Small cell lung cancer (SCLC) carries a poor prognosis, and the systemic therapies currently used as treatments are only modestly effective, as demonstrated by a low 5-year survival at only ∼5%. In this retrospective collected from March 2013 to study, we performed comprehensive genomic profiling of 98 small cell undifferentiated lung cancer (SCLC) samples to identify potential targets of therapy not currently searched for in routine clinical practice. Methods DNA from 98 SCLC was sequenced to high, uniform coverage (Illumina HiSeq 2500) and analysed for all classes of genomic alterations. Results A total of 386 alterations were identified for an average of 3.9 alterations per tumour (range 1–10). Fifty-two (53%) of cases harboured at least 1 actionable alteration with the potential to personalise therapy including base substitutions, amplifications or homozygous deletions in RICTOR (10%), KIT (7%), PIK3CA (6%), EGFR (5%), PTEN (5%), KRAS (5%), MCL1 (4%), FGFR1 (4%), BRCA2, (4%), TSC1 (3%), NF1 (3%), EPHA3 (3%) and CCND1. The most common non-actionable genomic alterations were alterations in TP53 (86% of SCLC cases), RB1 (54%) and MLL2 (17%). Conclusions Greater than 50% of the SCLC cases harboured at least one actionable alteration. Given the limited treatment options and poor prognosis of patients with SCLC, comprehensive genomic profiling has the potential to identify new treatment paradigms and meet an unmet clinical need for this disease.


Oncologist | 2015

Oncogenic Alterations in ERBB2/HER2 Represent Potential Therapeutic Targets Across Tumors From Diverse Anatomic Sites of Origin

Juliann Chmielecki; Jeffrey S. Ross; Kai Wang; Garrett Michael Frampton; Gary A. Palmer; Siraj M. Ali; Norma Alonzo Palma; Deborah Morosini; Vincent A. Miller; Roman Yelensky; Doron Lipson; Philip J. Stephens

BACKGROUND Targeted ERBB2/HER2 inhibitors are approved by the U.S. Food and Drug Administration for the treatment of breast, gastric, and esophageal cancers that overexpress or amplify HER2/ERBB2, as measured by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. Activating mutations in ERBB2 have also been reported and are predicted to confer sensitivity to these targeted agents. Testing for these mutations is not performed routinely, and FISH and IHC are not applied outside of these approved indications. MATERIALS AND METHODS We explored the spectrum of activating ERBB2 alterations across a collection of ∼ 7,300 solid tumor specimens that underwent comprehensive genomic profiling using next-generation sequencing. Results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes. RESULTS Known oncogenic ERBB2 alterations were identified in tumors derived from 27 tissues, and ERBB2 amplification in breast, gastric, and gastroesophageal cancers accounted for only 30% of these alterations. Activating mutations in ERBB2 were identified in 131 samples (32.5%); amplification was observed in 246 samples (61%). Two samples (0.5%) harbored an ERBB2 rearrangement. Ten samples (2.5%) harbored multiple ERBB2 mutations, yet mutations and amplifications were mutually exclusive in 91% of mutated cases. CONCLUSION Standard slide-based tests for overexpression or amplification of ERBB2 would fail to detect the majority of activating mutations that occur overwhelmingly in the absence of copy number changes. Compared with current clinical standards, comprehensive genomic profiling of a more diverse set of tumor types may identify ∼ 3.5 times the number of patients who may benefit from ERBB2-targeted therapy.


Oncologist | 2015

Prospective Comprehensive Genomic Profiling of Advanced Gastric Carcinoma Cases Reveals Frequent Clinically Relevant Genomic Alterations and New Routes for Targeted Therapies

Siraj M. Ali; Eric M. Sanford; Samuel J. Klempner; Douglas A. Rubinson; Kai Wang; Norma Alonzo Palma; Juliann Chmielecki; Roman Yelensky; Gary A. Palmer; Deborah Morosini; Doron Lipson; Daniel V.T. Catenacci; Fadi S. Braiteh; Rachel L. Erlich; Philip J. Stephens; Jeffrey S. Ross; Sai-Hong Ignatius Ou; Vincent A. Miller

BACKGROUND Gastric cancer (GC) is a major global cancer burden and the second most common cause of global cancer-related deaths. The addition of anti-ERBB2 (HER2) targeted therapy to chemotherapy improves survival for ERBB2-amplified advanced GC patients; however, the majority of GC patients do not harbor this alteration and thus cannot benefit from targeted therapy under current practice paradigms. MATERIALS AND METHODS Prospective comprehensive genomic profiling of 116 predominantly locally advanced or metastatic (90.0%) gastric cancer cases was performed to identify genomic alterations (GAs) associated with a potential response to targeted therapies approved by the U.S. Food and Drug Administration or targeted therapy-based clinical trials. RESULTS Overall, 78% of GC cases harbored one clinically relevant GA or more, with the most frequent alterations being found in TP53 (50%), ARID1A (24%), KRAS (16%), CDH1 (15%), CDKN2A (14%), CCND1 (9.5%), ERBB2 (8.5%), PIK3CA (8.6%), MLL2 (6.9%), FGFR2 (6.0%), and MET (6.0%). Receptor tyrosine kinase genomic alterations were detected in 20.6% of cases, primarily ERBB2, FGFR2, and MET amplification, with ERBB2 alterations evenly split between amplifications and base substitutions. Rare BRAF mutations (2.6%) were also observed. One MET-amplified GC patient responded for 5 months to crizotinib, a multitargeted ALK/ROS1/MET inhibitor. CONCLUSION Comprehensive genomic profiling of GC identifies clinically relevant GAs that suggest benefit from targeted therapy including MET-amplified GC and ERBB2 base substitutions.


Journal of Clinical Pathology | 2014

Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies

J.S. Ross; Kai Wang; J V Rand; M J Presta; Christine E. Sheehan; Siraj M. Ali; Julia A. Elvin; Elaine LaBrecque; C Hiemstra; Jamie Buell; Geoff Otto; Roman Yelensky; Doron Lipson; Deborah Morosini; Juliann Chmielecki; V.A. Miller; P.J. Stephens

Aims Adrenocortical carcinoma (ACC) carries a poor prognosis and current systemic cytotoxic therapies result in only modest improvement in overall survival. In this retrospective study, we performed a comprehensive genomic profiling of 29 consecutive ACC samples to identify potential targets of therapy not currently searched for in routine clinical practice. Methods DNA from 29 ACC was sequenced to high, uniform coverage (Illumina HiSeq) and analysed for genomic alterations (GAs). Results At least one GA was found in 22 (76%) ACC (mean 2.6 alterations per ACC). The most frequent GAs were in TP53 (34%), NF1 (14%), CDKN2A (14%), MEN1 (14%), CTNNB1 (10%) and ATM (10%). APC, CCND2, CDK4, DAXX, DNMT3A, KDM5C, LRP1B, MSH2 and RB1 were each altered in two cases (7%) and EGFR, ERBB4, KRAS, MDM2, NRAS, PDGFRB, PIK3CA, PTEN and PTCH1 were each altered in a single case (3%). In 17 (59%) of ACC, at least one GA was associated with an available therapeutic or a mechanism-based clinical trial. Conclusions Next-generation sequencing can discover targets of therapy for relapsed and metastatic ACC and shows promise to improve outcomes for this aggressive form of cancer.

Collaboration


Dive into the Deborah Morosini's collaboration.

Top Co-Authors

Avatar

Jeffrey S. Ross

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge