Juliann Chmielecki
Foundation Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliann Chmielecki.
Nature Reviews Cancer | 2010
William Pao; Juliann Chmielecki
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) was first recognized in 2004 as a distinct, clinically relevant molecular subset of lung cancer. The disease has been the subject of intensive research at both the basic scientific and clinical levels, becoming a paradigm for how to understand and treat oncogene-driven carcinomas. Although patients with EGFR-mutant tumours have increased sensitivity to tyrosine kinase inhibitors (TKIs), primary and acquired resistance to these agents remains a major clinical problem. This Review summarizes recent developments aimed at treating and ultimately curing the disease.
Science Translational Medicine | 2011
Juliann Chmielecki; Jasmine Foo; Geoffrey R. Oxnard; Katherine E. Hutchinson; Kadoaki Ohashi; Romel Somwar; Lu Wang; Katherine R. Amato; Maria E. Arcila; Martin L. Sos; Nicholas D. Socci; Agnes Viale; Elisa de Stanchina; Michelle S. Ginsberg; Roman K. Thomas; Mark G. Kris; Akira Inoue; Marc Ladanyi; Vincent A. Miller; Franziska Michor; William Pao
Predictive models of EGFR-mutant tumor behavior point to alternative drug dosing strategies to prevent and treat acquired resistance. Harnessing Evolution to Improve Lung Cancer Therapy Like any organism under severe evolutionary pressure, a few select members of a cancer cell population acquire molecular changes that strengthen the clan’s chances of survival. Therapeutic drugs exert a powerful selective force on characteristically compliant cancer cells, as the common recurrence of drug-resistant cancers testifies. To learn how to better fight the potent forces of evolution, Chmielecki et al. examined the behavior of non–small cell lung cancer (NSCLC) before and after the cells acquire resistance to targeted therapy, which inevitably they do. The growth characteristics of these cells were consistent with patient tumor behavior, enabling construction of a mathematical model that predicted alternative therapeutic strategies to delay the development of drug-resistant cancer cells. The authors made paired isogenic cell lines that were sensitive and resistant to afatinib and erlotinib—drugs used to treat NSCLC that are directed against the epidermal growth factor receptor (EGFR) tyrosine kinase, which is activated in a subset of NSCLCs. To the authors’ surprise, the drug-resistant cells grew more slowly than their sensitive counterparts, and resistance was not maintained in the absence of selection. Multiple clinical observations corroborated these findings. For example, patients with resistant tumors showed a slow course of disease progression, and patients with acquired resistance have re-responded to tyrosine kinase inhibitor (TKI) therapy after a drug holiday. The authors then constructed an evolutionary mathematical model of tumor behavior based on the differential growth rates of TKI-sensitive and TKI-resistant cells in heterogeneous tumor cell populations. Understanding the growth dynamics of how tumors behave allowed the authors to calculate what would happen under different treatment regimes. Their models predicted that continuous administration of a low-dose EGFR TKI combined with high-dose pulses of an EGFR TKI should delay the onset of resistance. Subsequent cellular studies bore out this prediction. Modeling also indicated the wisdom of prolonging treatment with the EGFR TKI after the development of resistance to prevent fast overgrowth by the sensitive cells, a result also born out in vitro and in vivo. Ultimate proof will have to come from patients. Clinical trials based on these alternative dosing strategies will be the true test of the utility of evolutionary mathematical modeling in designing cancer treatments. If they prove beneficial, individual models based on the characteristics of diverse cancer cell types could offer clues for designing optimal treatment strategies. Non–small cell lung cancers (NSCLCs) that harbor mutations within the epidermal growth factor receptor (EGFR) gene are sensitive to the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. Unfortunately, all patients treated with these drugs will acquire resistance, most commonly as a result of a secondary mutation within EGFR (T790M). Because both drugs were developed to target wild-type EGFR, we hypothesized that current dosing schedules were not optimized for mutant EGFR or to prevent resistance. To investigate this further, we developed isogenic TKI-sensitive and TKI-resistant pairs of cell lines that mimic the behavior of human tumors. We determined that the drug-sensitive and drug-resistant EGFR-mutant cells exhibited differential growth kinetics, with the drug-resistant cells showing slower growth. We incorporated these data into evolutionary mathematical cancer models with constraints derived from clinical data sets. This modeling predicted alternative therapeutic strategies that could prolong the clinical benefit of TKIs against EGFR-mutant NSCLCs by delaying the development of resistance.
Clinical Cancer Research | 2011
Geoffrey R. Oxnard; Maria E. Arcila; Camelia S. Sima; Gregory J. Riely; Juliann Chmielecki; Mark G. Kris; William Pao; Marc Ladanyi; Vincent A. Miller
Purpose: Patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI) after a median of 10 to 16 months. In half of these cases, a second EGFR mutation, T790M, underlies acquired resistance. We undertook this study to examine the clinical course of patients harboring the T790M mutation following progression on TKI. Experimental Design: EGFR-mutant lung cancer patients with acquired resistance to EGFR TKIs were identified as part of a prospective rebiopsy protocol in which postprogression tumor specimens were collected for molecular analysis. Postprogression survival and characteristics of disease progression were compared in patients with and without T790M. Results: We identified T790M in the initial rebiopsy specimens from 58 of 93 patients (62%, 95% CI: 52–72). T790M was more common in biopsies of lung/pleura tissue and lymph nodes than in more distant sites (P = 0.014). Median postprogression survival was 16 months (interquartile range = 9–29 months); patients with T790M had a significantly longer postprogression survival (P = 0.036). Patients without T790M more often progressed in a previously uninvolved organ system (P = 0.014) and exhibited a poorer performance status at time of progression (P = 0.007). Conclusions: Among patients with acquired resistance to EGFR TKIs, the presence of T790M defines a clinical subset with a relatively favorable prognosis and more indolent progression. Knowledge of T790M status is therefore important both for the clinical care of these patients and for the optimal design and interpretation of clinical trials in this setting. Clin Cancer Res; 17(6); 1616–22. ©2010 AACR.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kadoaki Ohashi; Lecia V. Sequist; Maria E. Arcila; Teresa Moran; Juliann Chmielecki; Ya Lun Lin; Yumei Pan; Lu Wang; Elisa de Stanchina; Kazuhiko Shien; Keisuke Aoe; Shinichi Toyooka; Katsuyuki Kiura; Lynnette Fernandez-Cuesta; Panos Fidias; James Chih-Hsin Yang; Vincent A. Miller; Gregory J. Riely; Mark G. Kris; Jeffrey A. Engelman; Cindy L. Vnencak-Jones; Dora Dias-Santagata; Marc Ladanyi; William Pao
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease progression using EGFR-mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS/RAF/MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS, KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR-mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.
PLOS Medicine | 2007
Yixuan Gong; Romel Somwar; Katerina Politi; Marissa Balak; Juliann Chmielecki; Xuejun Jiang; William Pao
Background Mutations in the epidermal growth factor receptor (EGFR) gene are associated with increased sensitivity of lung cancers to kinase inhibitors like erlotinib. Mechanisms of cell death that occur after kinase inhibition in these oncogene-dependent tumors have not been well delineated. We sought to improve understanding of this process in order to provide insight into mechanisms of sensitivity and/or resistance to tyrosine kinase inhibitors and to uncover new targets for therapy. Methods and Findings Using a panel of human lung cancer cell lines that harbor EGFR mutations and a variety of biochemical, molecular, and cellular techniques, we show that EGFR kinase inhibition in drug-sensitive cells provokes apoptosis via the intrinsic pathway of caspase activation. The process requires induction of the proapoptotic BH3-only BCL2 family member BIM (i.e., BCL2-like 11, or BCL2L11); erlotinib dramatically induces BIM levels in sensitive but not in resistant cell lines, and knockdown of BIM expression by RNA interference virtually eliminates drug-induced cell killing in vitro. BIM status is regulated at both transcriptional and posttranscriptional levels and is influenced by the extracellular signal-regulated kinase (ERK) signaling cascade downstream of EGFR. Consistent with these findings, lung tumors and xenografts from mice bearing mutant EGFR-dependent lung adenocarcinomas display increased concentrations of Bim after erlotinib treatment. Moreover, an inhibitor of antiapoptotic proteins, ABT-737, enhances erlotinib-induced cell death in vitro. Conclusions In drug-sensitive EGFR mutant lung cancer cells, induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors. This finding implies that the intrinsic pathway of caspase activation may influence sensitivity and/or resistance of EGFR mutant lung tumor cells to EGFR kinase inhibition. Manipulation of the intrinsic pathway could be a therapeutic strategy to enhance further the clinical outcomes of patients with EGFR mutant lung tumors.
Clinical Cancer Research | 2011
Geoffrey R. Oxnard; Maria E. Arcila; Juliann Chmielecki; Marc Ladanyi; Vincent A. Miller; William Pao
The management of non–small cell lung carcinoma (NSCLC) has been transformed by the observation that lung adenocarcinomas harboring mutations in epidermal growth factor receptor (EGFR) are uniquely sensitive to EGFR tyrosine kinase inhibitors (TKI). In these patients, acquired resistance to EGFR-TKI develops after a median of 10 to 14 months, at which time the current standard practice is to switch to conventional cytotoxic chemotherapy. Several possible mechanisms for acquired resistance have been identified, the most common being the development of an EGFR T790M gatekeeper mutation in more than 50% of cases. In this review, we discuss recent advances in the understanding of acquired TKI resistance in EGFR-mutant lung cancer and review therapeutic progress with second generation TKIs and combinations of targeted therapies. Clin Cancer Res; 17(17); 5530–7. ©2011 AACR.
Nature Genetics | 2013
Juliann Chmielecki; Aimee M. Crago; Mara Rosenberg; Rachael O'Connor; Sarah R. Walker; Lauren Ambrogio; Daniel Auclair; Aaron McKenna; Michael C. Heinrich; David A. Frank; Matthew Meyerson
Solitary fibrous tumors (SFTs) are rare mesenchymal tumors. Here, we describe the identification of a NAB2-STAT6 fusion from whole-exome sequencing of 17 SFTs. Analysis in 53 tumors confirmed the presence of 7 variants of this fusion transcript in 29 tumors (55%), representing a lower bound for fusion frequency at this locus and suggesting that the NAB2-STAT6 fusion is a distinct molecular feature of SFTs.
Nature Medicine | 2014
Zongli Zheng; Matthew Liebers; Boryana Zhelyazkova; Yi Cao; Divya Panditi; Kerry Lynch; Juxiang Chen; Hayley Robinson; Hyo Sup Shim; Juliann Chmielecki; William Pao; Jeffrey A. Engelman; A. John Iafrate; Long P. Le
We describe a rapid target enrichment method for next-generation sequencing, termed anchored multiplex PCR (AMP), that is compatible with low nucleic acid input from formalin-fixed paraffin-embedded (FFPE) specimens. AMP is effective in detecting gene rearrangements (without prior knowledge of the fusion partners), single nucleotide variants, insertions, deletions and copy number changes. Validation of a gene rearrangement panel using 319 FFPE samples showed 100% sensitivity (95% confidence limit: 96.5–100%) and 100% specificity (95% confidence limit: 99.3–100%) compared with reference assays. On the basis of our experience with performing AMP on 986 clinical FFPE samples, we show its potential as both a robust clinical assay and a powerful discovery tool, which we used to identify new therapeutically important gene fusions: ARHGEF2-NTRK1 and CHTOP-NTRK1 in glioblastoma, MSN-ROS1, TRIM4-BRAF, VAMP2-NRG1, TPM3-NTRK1 and RUFY2-RET in lung cancer, FGFR2-CREB5 in cholangiocarcinoma and PPL-NTRK1 in thyroid carcinoma. AMP is a scalable and efficient next-generation sequencing target enrichment method for research and clinical applications.
Cancer Discovery | 2015
Garrett Michael Frampton; Siraj M. Ali; Mark Rosenzweig; Juliann Chmielecki; Xinyuan Lu; Todd Michael Bauer; Mikhail Akimov; Jose A. Bufill; Carrie B. Lee; David Jentz; Rick Hoover; Sai-Hong Ignatius Ou; Ravi Salgia; Tim Brennan; Zachary R. Chalmers; Savina Jaeger; Alan Huang; Julia A. Elvin; Rachel L. Erlich; Alex Fichtenholtz; Kyle Gowen; Joel Greenbowe; Adrienne Johnson; Depinder Khaira; Caitlin McMahon; Eric M. Sanford; Steven Roels; Jared White; Joel Greshock; Robert Schlegel
UNLABELLED Focal amplification and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 (METex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across tumor types are unknown. Here, we report analysis of tumor genomic profiles from 38,028 patients to identify 221 cases with METex14 mutations (0.6%), including 126 distinct sequence variants. METex14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%), brain glioma (0.4%), and tumors of unknown primary origin (0.4%). Further in vitro studies demonstrate sensitivity to MET inhibitors in cells harboring METex14 alterations. We also report three new patient cases with METex14 alterations in lung or histiocytic sarcoma tumors that showed durable response to two different MET-targeted therapies. The diversity of METex14 mutations indicates that diagnostic testing via comprehensive genomic profiling is necessary for detection in a clinical setting. SIGNIFICANCE Here we report the identification of diverse exon 14 splice site alterations in MET that result in constitutive activity of this receptor and oncogenic transformation in vitro. Patients whose tumors harbored these alterations derived meaningful clinical benefit from MET inhibitors. Collectively, these data support the role of METex14 alterations as drivers of tumorigenesis, and identify a unique subset of patients likely to derive benefit from MET inhibitors.
Cancer Discovery | 2014
Jack F. Shern; Li Chen; Juliann Chmielecki; Jun S. Wei; Rajesh Patidar; Mara Rosenberg; Lauren Ambrogio; Daniel Auclair; Jianjun Wang; Young K. Song; Catherine Tolman; Laura Hurd; Hongling Liao; Shile Zhang; Dominik Bogen; Andrew S. Brohl; Sivasish Sindiri; Daniel Catchpoole; Thomas C. Badgett; Gad Getz; Jaume Mora; James R. Anderson; Stephen X. Skapek; Frederic G. Barr; Matthew Meyerson; Douglas S. Hawkins; Javed Khan
UNLABELLED Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Childrens Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. SIGNIFICANCE This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention.