Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah O'Connell is active.

Publication


Featured researches published by Deborah O'Connell.


Plasma Sources Science and Technology | 2012

Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities

Tomoyuki Murakami; Kari Niemi; Timo Gans; Deborah O'Connell; W. G. Graham

In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium?oxygen mixture plasmas (He?O2, helium with 5000?ppm admixture of oxygen) for wide air impurity levels of 0?500?ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.


Applied Physics Letters | 2011

Cold atmospheric pressure plasma jet interactions with plasmid DNA

Deborah O'Connell; L. J. Cox; Wendy B. Hyland; Stephen J. McMahon; Stephan Reuter; W. G. Graham; Timo Gans; Frederick Currell

The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.


PLOS ONE | 2012

Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma.

Mahmoud Y. Alkawareek; Qais Th. Algwari; Garry Laverty; Sean Gorman; W. G. Graham; Deborah O'Connell; Brendan Gilmore

Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (∼10′s s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.


Plasma Sources Science and Technology | 2011

The role of helium metastable states in radio-frequency driven helium–oxygen atmospheric pressure plasma jets: measurement and numerical simulation

Kari Niemi; Jochen Waskoenig; Nader Sadeghi; Timo Gans; Deborah O'Connell

Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium?oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like ?-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.


Fems Immunology and Medical Microbiology | 2012

Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms.

Mahmoud Y. Alkawareek; Qais Th. Algwari; Sean Gorman; W. G. Graham; Deborah O'Connell; Brendan Gilmore

The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Within < 4 min of plasma exposure, complete eradication of the two gram-positive bacterial biofilms was achieved. Although gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach.


British Journal of Cancer | 2015

Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells

Adam M. Hirst; Matthew S. Simms; Vincent M. Mann; Norman J. Maitland; Deborah O'Connell; Fiona M. Frame

Background:In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species.Method:The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout.Results:Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.Conclusions:This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response.


Journal of Physics D | 2007

Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge

Julian Schulze; Timo Gans; Deborah O'Connell; Uwe Czarnetzki; A. R. Ellingboe; M M Turner

The dynamics of high energetic electrons (11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He–O2 plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited. (Some figures in this article are in colour only in the electronic version)


Applied Physics Letters | 2011

Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

Q. Th. Algwari; Deborah O'Connell

The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.


Journal of Physics D | 2008

Neutral gas depletion mechanisms in dense low-temperature argon plasmas

Deborah O'Connell; Timo Gans; Dragos Crintea; Uwe Czarnetzki; Nader Sadeghi

Neutral gas depletion mechanisms are investigated in a dense low-temperature argon plasma—an inductively coupled magnetic neutral loop (NL) discharge. Gas temperatures are deduced from the Doppler profile of the 772.38 nm line absorbed by argon metastable atoms. Electron density and temperature measurements reveal that at pressures below 0.1 Pa, relatively high degrees of ionization (exceeding 1%) result in electron pressures, pe = kTene, exceeding the neutral gas pressure. In this regime, neutral dynamics has to be taken into account and depletion through comparatively high ionization rates becomes important. This additional depletion mechanism can be spatially separated due to non-uniform electron temperature and density profiles (non-uniform ionization rate), while the gas temperature is rather uniform within the discharge region. Spatial profiles of the depletion of metastable argon atoms in the NL region are observed by laser induced fluorescence spectroscopy. In this region, the depletion of ground state argon atoms is expected to be even more pronounced since in the investigated high electron density regime the ratio of metastable and ground state argon atom densities is governed by the electron temperature, which peaks in the NL region. This neutral gas depletion is attributed to a high ionization rate in the NL zone and fast ion loss through ambipolar diffusion along the magnetic field lines. This is totally different from what is observed at pressures above 10 Pa where the degree of ionization is relatively low (<10 −3 ) and neutral gas depletion is dominated by gas heating.


Plasma Sources Science and Technology | 2012

Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet

E. Wagenaars; Timo Gans; Deborah O'Connell; Kari Niemi

The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0–0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.

Collaboration


Dive into the Deborah O'Connell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. G. Graham

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Dedrick

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Schulze

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge