Timo Gans
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timo Gans.
Plasma Sources Science and Technology | 2012
Tomoyuki Murakami; Kari Niemi; Timo Gans; Deborah O'Connell; W. G. Graham
In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium?oxygen mixture plasmas (He?O2, helium with 5000?ppm admixture of oxygen) for wide air impurity levels of 0?500?ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.
Plasma Sources Science and Technology | 2010
Jochen Waskoenig; Kari Niemi; N. Knake; L.M. Graham; Stephan Reuter; V Schulz-von der Gathen; Timo Gans
Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.
Applied Physics Letters | 2011
Deborah O'Connell; L. J. Cox; Wendy B. Hyland; Stephen J. McMahon; Stephan Reuter; W. G. Graham; Timo Gans; Frederick Currell
The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.
Journal of Applied Physics | 2011
J. S. Sousa; Kari Niemi; L. J. Cox; Q. Th. Algwari; Timo Gans; D. O’Connell
Absolute densities of singlet delta oxygen (SDO) molecules were measured using infrared optical emission spectroscopy in the flowing effluents of two different atmospheric-pressure plasma jets (APPJs): a capacitively coupled radio-frequency-driven jet (rf-APPJ) and a lower frequency kilohertz-driven dielectric barrier discharge jet. The plasma jets were operated in helium, with small admixtures of molecular oxygen (O2 < 2%). High absolute SDO densities of up to 6.2 × 1015 cm−3 were measured at approximately 10 cm downstream. The rf-APPJ seems to be much more efficient in producing SDO. The influence of different parameters, such as gas flows and mixtures and power coupled to the plasmas, on the production of SDO by the two APPJs has been investigated. Despite the considerable differences between the two plasma jets (excitation frequency, electric field direction, inter-electrode distance, plasma propagation), similar dependencies on the oxygen admixture and on the dissipated power were found in both APPJs...
Applied Physics Letters | 2006
Timo Gans; Julian Schulze; D. O’Connell; Uwe Czarnetzki; R. Faulkner; A. R. Ellingboe; Miles M. Turner
An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor (Exelan®, Lam Research) has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.
Journal of Physics D | 2008
V Schulz-von der Gathen; L Schaper; N. Knake; Stephan Reuter; Kari Niemi; Timo Gans; Jörg Winter
Despite enormous potential for technological applications, fundamentals of stable non-equilibrium micro-plasmas at ambient pressure are still only partly understood. Micro-plasma jets are one sub-group of these plasma sources. For an understanding it is particularly important to analyse transport phenomena of energy and particles within and between the core and effluent of the discharge. The complexity of the problem requires the combination and correlation of various highly sophisticated diagnostics yielding different information with an extremely high temporal and spatial resolution. A specially designed rf microscale atmospheric pressure plasma jet (μ-APPJ) provides excellent access for optical diagnostics to the discharge volume and the effluent region. This allows detailed investigations of the discharge dynamics and energy transport mechanisms from the discharge to the effluent. Here we present examples for diagnostics applicable to different regions and combine the results. The diagnostics applied are optical emission spectroscopy (OES) in the visible and ultraviolet and two-photon absorption laser-induced fluorescence spectroscopy. By the latter spatially resolved absolutely calibrated density maps of atomic oxygen have been determined for the effluent. OES yields an insight into energy transport mechanisms from the core into the effluent. The first results of spatially and phase-resolved OES measurements of the discharge dynamics of the core are presented.
Plasma Sources Science and Technology | 2011
Kari Niemi; Jochen Waskoenig; Nader Sadeghi; Timo Gans; Deborah O'Connell
Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium?oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like ?-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.
Journal of Physics D | 2007
Julian Schulze; Timo Gans; Deborah O'Connell; Uwe Czarnetzki; A. R. Ellingboe; M M Turner
The dynamics of high energetic electrons (11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He–O2 plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited. (Some figures in this article are in colour only in the electronic version)
Journal of Physics D | 2008
Deborah O'Connell; Timo Gans; Dragos Crintea; Uwe Czarnetzki; Nader Sadeghi
Neutral gas depletion mechanisms are investigated in a dense low-temperature argon plasma—an inductively coupled magnetic neutral loop (NL) discharge. Gas temperatures are deduced from the Doppler profile of the 772.38 nm line absorbed by argon metastable atoms. Electron density and temperature measurements reveal that at pressures below 0.1 Pa, relatively high degrees of ionization (exceeding 1%) result in electron pressures, pe = kTene, exceeding the neutral gas pressure. In this regime, neutral dynamics has to be taken into account and depletion through comparatively high ionization rates becomes important. This additional depletion mechanism can be spatially separated due to non-uniform electron temperature and density profiles (non-uniform ionization rate), while the gas temperature is rather uniform within the discharge region. Spatial profiles of the depletion of metastable argon atoms in the NL region are observed by laser induced fluorescence spectroscopy. In this region, the depletion of ground state argon atoms is expected to be even more pronounced since in the investigated high electron density regime the ratio of metastable and ground state argon atom densities is governed by the electron temperature, which peaks in the NL region. This neutral gas depletion is attributed to a high ionization rate in the NL zone and fast ion loss through ambipolar diffusion along the magnetic field lines. This is totally different from what is observed at pressures above 10 Pa where the degree of ionization is relatively low (<10 −3 ) and neutral gas depletion is dominated by gas heating.
Plasma Sources Science and Technology | 2012
E. Wagenaars; Timo Gans; Deborah O'Connell; Kari Niemi
The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0–0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.