Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah Weiss is active.

Publication


Featured researches published by Deborah Weiss.


AIDS | 2008

Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope.

Susan W. Barnett; Indresh K. Srivastava; Elaine Kan; Fengmin Zhou; Amanda Goodsell; Anthony D. Cristillo; Maria Grazia Ferrai; Deborah Weiss; Norman L. Letvin; David C. Montefiori; Ranajit Pal; Michael Vajdy

Background:Worldwide, the majority of human immunodeficiency virus (HIV) infections occur by heterosexual transmission. Thus, the development of a vaccine that can prevent intravaginal HIV infection is an important goal of AIDS vaccine research. Objectives:To determine which single or combination of systemic and mucosal routes of immunizations of female rhesus macaques with an HIV-1SF162 envelope protein vaccine induced protection against intravaginal challenge with SHIV. Design:Female rhesus macaques were immunized with an HIV-1SF162 envelope protein vaccine administered systemically (intramuscularly), or mucosally (intranasally), or as a sequential combination of both routes. The macaques were then challenged intravaginally with SHIVSF162P4, expressing an envelope that is closely matched (homologous) to the vaccine. Results:Macaques receiving intramuscular immunizations, alone or in combination with intranasal immunizations, were protected from infection, with no detectable plasma viral RNA, provirus, or seroconversion to nonvaccine viral proteins, and better preservation of intestinal CD4+ T cells. Serum neutralizing antibodies against the challenge virus appeared to correlate with protection. Conclusions:The results of this study demonstrate that, in the nonhuman primate model, it is possible for vaccine-elicited immune responses to prevent infection after intravaginal administration of virus.


Vaccine | 2008

Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation

Margherita Rosati; Antonio Valentin; Rashmi Jalah; Vainav Patel; Agneta von Gegerfelt; Cristina Bergamaschi; Candido Alicea; Deborah Weiss; Jim Treece; Ranajit Pal; Phillip D. Markham; Ernesto T. A. Marques; J. Thomas August; Amir R. Khan; Ruxandra Draghia-Akli; Barbara K. Felber; George N. Pavlakis

We used optimized DNA expression vectors to compare two gene delivery methodologies in rhesus macaques, namely direct DNA injection and in vivo adaptive constant-current electroporation via the intramuscular route. The use of in vivo electroporation increased levels of gene expression and immune responses. We used an optimized HIV gag expression plasmid to show the development of new cellular immune responses in SIV-infected animals controlling viremia. Furthermore, after vaccination with SIV expression plasmids the recall responses to the SIV antigens were very high, indicating that DNA is a strong boost in the presence of antiretroviral treatment in SIV-infected animals. There was substantial animal-to-animal variability in DNA expression, revealed by plasma measurements of IL-15 produced by co-injected IL-15 DNA. IL-15 expression levels correlated with peak immune responses. Electroporation led to an expansion of antigen-specific CD4+ and CD8+ T cells of both central and effector memory phenotype. These results indicate that improved gene delivery and expression by electroporation dramatically increases immunogenicity of DNA vaccines. Electroporation is thus an important method to improve the effectiveness of DNA vaccination.


Journal of Medical Primatology | 2009

A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development.

Rosa R. Yu; Andrew Cheng; Laurel A. Lagenaur; Wenjun Huang; Deborah Weiss; Jim Treece; Brigitte E Sanders-Beer; Dean H. Hamer; Peter P. Lee; Qiang Xu; Yang Liu

Background  We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates.


Journal of Virology | 2012

Fatal Pancreatitis in Simian Immunodeficiency Virus SIVmac251-Infected Macaques Treated with 2′,3′-Dideoxyinosine and Stavudine following Cytotoxic-T-Lymphocyte-Associated Antigen 4 and Indoleamine 2,3-Dioxygenase Blockade

Monica Vaccari; Adriano Boasso; Claudio Fenizia; Dietmar Fuchs; Anna Hryniewicz; Tia Morgan; Deborah Weiss; Melvin N. Doster; Jean-Michel Heraud; Gene M. Shearer; Genoveffa Franchini

ABSTRACT Human immunodeficiency virus (HIV) infection is associated with immune activation, CD4+-T-cell loss, and a progressive decline of immune functions. Antiretroviral therapy (ART) only partially reverses HIV-associated immune dysfunction, suggesting that approaches that target immune activation and improve virus-specific immune responses may be needed. We performed a preclinical study in rhesus macaques infected with the pathogenic simian immunodeficiency virus SIVmac251 and treated with ART. We tested whether vaccination administered together with cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) blockade and treatment with the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (d-1mT), decreased immune activation and improved vaccine efficacy. The treatment did not augment vaccine immunogenicity; rather, it dramatically increased ART-related toxicity, causing all treated animals to succumb to acute pancreatitis and hyperglycemic coma. The onset of fulminant diabetes was associated with severe lymphocyte infiltration of the pancreas and complete loss of the islets of Langerhans. Thus, caution should be used when considering approaches aimed at targeting immune activation during ART.


Journal of Virology | 2015

Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates

Juan García-Arriaza; Beatriz Perdiguero; Jonathan L. Heeney; Michael S. Seaman; David C. Montefiori; Celia C. LaBranche; Nicole L. Yates; Xiaoying Shen; Georgia D. Tomaras; Guido Ferrari; Kathryn E. Foulds; Adrian B. McDermott; Shing-Fen Kao; Mario Roederer; Natalie Hawkins; Steve Self; Jiansheng Yao; Patrick Farrell; Sanjay Phogat; Jim Tartaglia; Susan W. Barnett; Brian J. Burke; Anthony D. Cristillo; Deborah Weiss; Carter Lee; Karen V. Kibler; Bert Jacobs; Benedikt Asbach; Ralf Wagner; Song Ding

ABSTRACT We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4+ T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8+ T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.


Journal of Virology | 2016

Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens

Benedikt Asbach; Alexander Kliche; Josef Köstler; Beatriz Perdiguero; Mariano Esteban; Bertram L. Jacobs; David C. Montefiori; Celia C. LaBranche; Nicole L. Yates; Georgia D. Tomaras; Guido Ferrari; Kathryn E. Foulds; Mario Roederer; Gary Landucci; Donald N. Forthal; Michael S. Seaman; Natalie Hawkins; Steven G. Self; Alicia Sato; Raphael Gottardo; Sanjay Phogat; James Tartaglia; Susan W. Barnett; Brian J. Burke; Anthony D. Cristillo; Deborah Weiss; Jesse Francis; Lindsey Galmin; Song Ding; Jonathan L. Heeney

ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.


Vaccine | 2014

Rhesus macaque rectal and duodenal tissues exhibit B-cell sub-populations distinct from peripheral blood that continuously secrete antigen-specific IgA in short-term explant cultures.

Michael A. Thomas; Thorsten Demberg; Diego A. Vargas-Inchaustegui; Peng Xiao; Iskra Tuero; David Venzon; Deborah Weiss; James Treece; Marjorie Robert-Guroff

It is becoming increasingly obvious that evaluation of a vaccine aimed at preventing HIV infection should include assessment of induced immunity at mucosal sites of viral entry. Among the most salient immune responses are viral-specific antibodies. A recent report on IgA-secreting plasma cells in human duodenal explants prompted us to examine similar duodenal and rectal biopsies of rhesus macaques, a key animal model for pre-clinical HIV/SIV vaccine studies, and characterize the local resident B-cells. Here we report that non-human primate rectal explants possess similar levels of B-cells as duodenal explants. We characterize the antibody isotype expression on mucosal memory B-cells and show for the first time that the B-cell memory subsets of the duodenum and rectum are distinct from those of PBMC, not only by essentially lacking CD27(+) cells, as previously reported for uninfected macaques (Titanji et al., 2010), but also in being mostly IgD(-). SIV- and SHIV-infected macaques had fewer total IgA-secreting cells in rectal tissue compared to naïve macaques. As expected, the fractions of B-cells with surface expression of IgA were dominant in the rectal and duodenal explants whereas in PBMC IgG surface expression was dominant among IgD(-) B-cells. Mucosal antibody secreting cells were found to be predominantly plasma cells/plasma blasts based on their lack of response to stimulation. Importantly, short-term culture of rectal explants of SIV- and SHIV-positive animals led to secretion of Env-specific IgA into the culture supernatant which could be easily measured by ELISA. Collection of such culture supernatant over several days allows for accumulation of mucosal antibody in amounts that should enable antibody purification, characterization, and use in functional assays. Rectal explants can be readily obtained and unequivocally identify the mucosal tissue as the source of antibody. Overall they facilitate evaluation of mucosal vaccines.


Journal of Virological Methods | 2008

Development of real-time PCR assays for quantitation of simian betaretrovirus serotype-1, -2, -3, and -5 viral DNA in Asian monkeys.

Hye-Kyung Chung; Tami Unangst; Jim Treece; Deborah Weiss; Phillip D. Markham

Simian betaretroviruses (SRV), formerly known as simian type D retroviruses, are endemic in many populations of Asian monkeys of the genus Macaca. Asian monkeys have been used extensively as animal models for preclinical HIV vaccine development, therapeutics, and other biomedical studies. SRV infection can sometimes lead to immune deficiency disease, which complicates such studies; thus, it is important to screen for SRV infection and remove infected animals from test populations. Real-time PCR assays were developed to specifically quantify SRV-1/3, SRV-2, and SRV-5 proviral DNA. The SRV provirus copy numbers were standardized relative to real-time PCR measurements of the rhesus macaque albumin gene. The primers and TaqMan probe sequences for the rhesus macaque (Indian origin) albumin gene also detect cynomolgus macaque and rhesus macaque (Chinese origin) albumin genes. The SRV primers and probes were designed to amplify gag gene sequences of SRV-1/3 (GeneBank accession number M11841), SRV-2 (GeneBank accession number M16605), and SRV-5 (GeneBank accession number AF252389). The optimized reactions for detection of each SRV serotype and the macaque albumin gene had amplification efficiencies of greater than 90% with a linear range spanning 1 x 10(1) to 2.5 x 10(6) copies per reaction. The R(2) values of all standard curves were greater than 0.995. Of 40 animals housed in quarantine, four animals were positive for SRV-1/3 with 28, 5450, 9780, and 14,500 copies of provirus per 10(6) PBMCs, and one animal was positive for SRV-2 with provirus copy number of 7790 per 10(6) PBMCs. All of 40 animals appeared to be seronegative and had normal CD4(+) and CD8(+) T-cell counts. These quantitative real-time PCR assays enhance the detection and quantitation of SRV infection and will facilitate the elimination of this virus from macaque colonies.


Virology | 2012

Virological and molecular characterization of a simian human immunodeficiency virus (SHIV) encoding the envelope and reverse transcriptase genes from HIV-1

Ranajit Pal; Lindsey Galmin; Lara E. Pereira; Bin Li; Jining Zhang; Daniel Li; Jesse Francis; Janet M. McNicholl; Deborah Weiss; James M. Smith

Simian-human immunodeficiency virus encoding both reverse transcriptase (RT) and envelope genes of HIV-1 (RT Env SHIV) is important for evaluating biomedical prevention modalities for HIV/AIDS. We describe virological characterization of a clade B RT Env SHIV following infection of macaques via multiple routes. In vivo passage of the RT Env SHIV through Indian rhesus macaque enhanced infectivity. Expanded virus had minimal envelope heterogeneity and was inhibited by NNRTIs and CCR5 antagonists. Infection of macaques with RT Env SHIV via mucosal or intravenous routes resulted in stable infection accompanied by peak plasma viremia of approximately 5×10(6) copies/ml that was controlled beyond set point. Molecular homogeneity of the virus was maintained following in vivo passage. Inhibition of RT Env SHIV by RT and entry inhibitors and ease of in vivo transmission make it a useful model for testing the efficacy of combinations of entry and RT inhibitors in nonhuman primates.


Journal of Virology | 2017

Superiority in rhesus macaques of targeting HIV-1 Env gp140 to CD40 versus LOX-1 in combination with replication-competent NYVAC-KC for induction of Env-specific antibody and T cell responses

Gerard Zurawski; Xiaoying Shen; Sandra Zurawski; Georgia D. Tomaras; David C. Montefiori; Mario Roederer; Guido Ferrari; Christine Lacabaratz; Peter Klucar; Zhiqing Wang; Kathryn E. Foulds; Shing-Fen Kao; Xuesong Yu; Alicia Sato; Nicole L. Yates; Celia C. LaBranche; Sherry A. Stanfield-Oakley; Karen V. Kibler; Bertram L. Jacobs; Andres M. Salazar; Steve Self; Jimmy Fulp; Raphael Gottardo; Lindsey Galmin; Deborah Weiss; Anthony D. Cristillo; Giuseppe Pantaleo; Yves Levy

ABSTRACT We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.

Collaboration


Dive into the Deborah Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgia D. Tomaras

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Guido Ferrari

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Kathryn E. Foulds

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphael Gottardo

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge