Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Debra Elton is active.

Publication


Featured researches published by Debra Elton.


Nucleic Acids Research | 2007

Codon conservation in the influenza A virus genome defines RNA packaging signals

Julia R. Gog; Emmanuel Dos Santos Afonso; Rosa M. Dalton; India Leclercq; Laurence Tiley; Debra Elton; Johann C. von Kirchbach; Nadia Naffakh; Nicolas Escriou; Paul Digard

Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.


Journal of General Virology | 2007

Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions

Sarah L. Noton; Elizabeth Medcalf; Dawn Fisher; Anne E. Mullin; Debra Elton; Paul Digard

The matrix (M1) protein of influenza A virus is a multifunctional protein that plays essential structural and functional roles in the virus life cycle. It drives virus budding and is the major protein component of the virion, where it forms an intermediate layer between the viral envelope and integral membrane proteins and the genomic ribonucleoproteins (RNPs). It also helps to control the intracellular trafficking of RNPs. These roles are mediated primarily via protein–protein interactions with viral and possibly cellular proteins. Here, the regions of M1 involved in binding the viral RNPs and in mediating homo-oligomerization are identified. In vitro, by using recombinant proteins, it was found that the middle domain of M1 was responsible for binding NP and that this interaction did not require RNA. Similarly, only M1 polypeptides containing the middle domain were able to bind to RNP–M1 complexes isolated from purified virus. When M1 self-association was examined, all three domains of the protein participated in homo-oligomerization although, again, the middle domain was dominant and self-associated efficiently in the absence of the N- and C-terminal domains. However, when the individual fragments of M1 were tagged with green fluorescent protein and expressed in virus-infected cells, microscopy of filamentous particles showed that only full-length M1 was incorporated into budding virions. It is concluded that the middle domain of M1 is primarily responsible for binding NP and self-association, but that additional interactions are required for efficient incorporation of M1 into virus particles.


Veterinary Microbiology | 2009

Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007

Neil Bryant; Adam Rash; Colin A. Russell; Julie Ross; Annie Cooke; Samantha Bowman; Shona MacRae; Nicola S. Lewis; R. Paillot; Reto Zanoni; Hanspeter Meier; Lowri A. Griffiths; Janet M. Daly; Ashish Tiwari; Thomas M. Chambers; J. Richard Newton; Debra Elton

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.


Journal of Virology | 2010

Dynamics of Influenza Virus Infection and Pathology

Roberto A. Saenz; Michelle Quinlivan; Debra Elton; Shona MacRae; A. S. Blunden; Jennifer A. Mumford; Janet M. Daly; Paul Digard; Ann Cullinane; Bryan T. Grenfell; John W. McCauley; J. L. N. Wood; Julia R. Gog

ABSTRACT A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.


Journal of Virology | 2010

Intra- and Interhost Evolutionary Dynamics of Equine Influenza Virus

Pablo R. Murcia; Gregory J. Baillie; Janet M. Daly; Debra Elton; Carley Jervis; Jennifer A. Mumford; Richard Newton; Colin R. Parrish; Karin Hoelzer; Gordon Dougan; Julian Parkhill; Nicola Lennard; Doug Ormond; Sharon Moule; Andrew Whitwham; John W. McCauley; Trevelyan J. McKinley; Edward C. Holmes; Bryan T. Grenfell; J. L. N. Wood

ABSTRACT Determining the evolutionary basis of cross-species transmission and immune evasion is key to understanding the mechanisms that control the emergence of either new viruses or novel antigenic variants with pandemic potential. The hemagglutinin glycoprotein of influenza A viruses is a critical host range determinant and a major target of neutralizing antibodies. Equine influenza virus (EIV) is a significant pathogen of the horse that causes periodical outbreaks of disease even in populations with high vaccination coverage. EIV has also jumped the species barrier and emerged as a novel respiratory pathogen in dogs, canine influenza virus. We studied the dynamics of equine influenza virus evolution in horses at the intrahost level and how this evolutionary process is affected by interhost transmission in a natural setting. To this end, we performed clonal sequencing of the hemagglutinin 1 gene derived from individual animals at different times postinfection. Our results show that despite the population consensus sequence remaining invariant, genetically distinct subpopulations persist during the course of infection and are also transmitted, with some variants likely to change antigenicity. We also detected a natural case of mixed infection in an animal infected during an outbreak of equine influenza, raising the possibility of reassortment between different strains of virus. In sum, our data suggest that transmission bottlenecks may not be as narrow as originally perceived and that the genetic diversity required to adapt to new host species may be partially present in the donor host and potentially transmitted to the recipient host.


Veterinary Journal | 2011

Equine influenza: A review of an unpredictable virus

Janet M. Daly; Shona MacRae; J. Richard Newton; Eva Wattrang; Debra Elton

This review discusses some of the challenges still faced in the control of equine influenza virus H3N8 infection. A widespread outbreak of equine influenza in the United Kingdom during 2003 in vaccinated Thoroughbred racehorses challenged the current dogma on vaccine strain selection. Furthermore, several new developments in the first decade of the 21st century, including transmission to and establishment in dogs, a presumed influenza-associated encephalopathy in horses and an outbreak of equine influenza in Australia, serve as a reminder of the unpredictable nature of influenza viruses. The application of newly available techniques described in this review may further elucidate some of the viral factors that underlie recent events and provide the tools to better evaluate when vaccine strains should be updated.


PLOS Pathogens | 2012

Evolution of an Eurasian Avian-like Influenza Virus in Naïve and Vaccinated Pigs

Pablo R. Murcia; Joseph Hughes; Patrizia Battista; Lucy Lloyd; Gregory J. Baillie; Ricardo H. Ramirez-Gonzalez; Doug Ormond; K. Oliver; Debra Elton; Jennifer A. Mumford; Mario Caccamo; Paul Kellam; Bryan T. Grenfell; Edward C. Holmes; J. L. N. Wood

Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.


Veterinary Microbiology | 2011

Isolation and characterisation of equine influenza viruses (H3N8) from Europe and North America from 2008 to 2009

Neil Bryant; Adam Rash; Alana Woodward; Elizabeth Medcalf; Maud Helwegen; Franziska Wohlfender; Fatima Cruz; Claudia Herrmann; Kerstin Borchers; Ashish Tiwari; Thomas M. Chambers; J. Richard Newton; Jennifer A. Mumford; Debra Elton

Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.


Journal of Virology | 2011

Antigenic and genetic evolution of equine influenza a (H3N8) virus from 1968 to 2007

Nicola S. Lewis; Janet M. Daly; Colin A. Russell; Daniel L. Horton; Eugene Skepner; Neil Bryant; David F. Burke; Adam Rash; J. L. N. Wood; Thomas M. Chambers; Ron A. M. Fouchier; J. A. Mumford; Debra Elton; Derek J. Smith

ABSTRACT Equine influenza virus is a major respiratory pathogen in horses, and outbreaks of disease often lead to substantial disruption to and economic losses for equestrian industries. The hemagglutinin (HA) protein is of key importance in the control of equine influenza because HA is the primary target of the protective immune response and the main component of currently licensed influenza vaccines. However, the influenza virus HA protein changes over time, a process called antigenic drift, and vaccine strains must be updated to remain effective. Antigenic drift is assessed primarily by the hemagglutination inhibition (HI) assay. We have generated HI assay data for equine influenza A (H3N8) viruses isolated between 1968 and 2007 and have used antigenic cartography to quantify antigenic differences among the isolates. The antigenic evolution of equine influenza viruses during this period was clustered: from 1968 to 1988, all isolates formed a single antigenic cluster, which then split into two cocirculating clusters in 1989, and then a third cocirculating cluster appeared in 2003. Viruses from all three clusters were isolated in 2007. In one of the three clusters, we show evidence of antigenic drift away from the vaccine strain over time. We determined that a single amino acid substitution was likely responsible for the antigenic differences among clusters.


Virology | 2009

Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway

Emily A. Bruce; Liz Medcalf; Colin M. Crump; Sarah L. Noton; Amanda D. Stuart; Helen Wise; Debra Elton; Katherine Bowers; Paul Digard

The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins. Trafficking of HA and M1 appeared normal when endosomal sorting was impaired by expression of inactive VPS4. Overexpression of either isoform of VPS28 or wildtype or dominant negative VPS4 proteins did not alter production of filamentous virions. SiRNA depletion of endogenous VPS28 had no significant effect on influenza virus replication. Furthermore, cells expressing wildtype or dominant-negative VPS4 replicated filamentous and non-filamentous strains of influenza to similar titres, indicating that influenza release is VPS4-independent. Overall, we see no role for the ESCRT pathway in influenza virus budding and the significance of the M1-VPS28 interaction remains to be determined.

Collaboration


Dive into the Debra Elton's collaboration.

Top Co-Authors

Avatar

Paul Digard

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet M. Daly

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Liz Medcalf

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge