Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Digard is active.

Publication


Featured researches published by Paul Digard.


Cell | 1989

Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot

Ian Brierley; Paul Digard; Stephen C. Inglis

Abstract The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshifting signal at the junction of two overlapping open reading frames. We have defined by deletion analysis an 86 nucleotide sequence encompassing the overlap region which is sufficient to allow frameshifting in a heterologous context. The upstream boundary of the signal consists of the sequence UUUAAAC, which is the likely site of ribosomal slippage. We show by creation of complementary nucleotide changes that the RNA downstream of this “slippery” sequence folds into a tertiary structure termed a pseudoknot, the formation of which is essential for efficient frameshifting.


Journal of General Virology | 2002

The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication.

Agustín Portela; Paul Digard

All viruses with negative-sense RNA genomes encode a single-strand RNA-binding nucleoprotein (NP). The primary function of NP is to encapsidate the virus genome for the purposes of RNA transcription, replication and packaging. The purpose of this review is to illustrate using the influenza virus NP as a well-studied example that the molecule is much more than a structural RNA-binding protein, but also functions as a key adapter molecule between virus and host cell processes. It does so through the ability to interact with a wide variety of viral and cellular macromolecules, including RNA, itself, two subunits of the viral RNA-dependent RNA polymerase and the viral matrix protein. NP also interacts with cellular polypeptides, including actin, components of the nuclear import and export apparatus and a nuclear RNA helicase. The evidence for the existence of each of these activities and their possible roles in transcription, replication and intracellular trafficking of the virus genome is considered.


Nature | 2012

IFITM3 restricts the morbidity and mortality associated with influenza

Aaron R. Everitt; Simon Clare; Thomas Pertel; Sinu P. John; Rachael S. Wash; Sarah E. Smith; Christopher R. Chin; Eric M. Feeley; Jennifer S. Sims; David J. Adams; Helen Wise; Leanne Kane; David Goulding; Paul Digard; Verneri Anttila; J. Kenneth Baillie; Timothy S. Walsh; David A. Hume; Aarno Palotie; Yali Xue; Vincenza Colonna; Chris Tyler-Smith; Jake Dunning; Stephen B. Gordon; Rosalind L. Smyth; Peter J. M. Openshaw; Gordon Dougan; Abraham L. Brass; Paul Kellam

The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins’ in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 ‘Spanish’ influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.


Science | 2012

An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response

Brett W. Jagger; Helen Wise; John C. Kash; K. A. Walters; Norma M. Wills; Y. L. Xiao; Rebecca L. Dunfee; Louis M. Schwartzman; A. Ozinsky; G. L. Bell; Rosa M. Dalton; A. Lo; Stacey Efstathiou; John F. Atkins; Andrew E. Firth; Jeffrey Taubenberger; Paul Digard

Influenzas Cryptic Constraint Because of the well-known pandemic potential of influenza viruses, it is important to understand the range of molecular interactions between the virus and its host. Despite years of intensive research on the virus, Jagger et al. (p. 199, published online 28 June; see the Perspective by Yewdell and Ince) have found that the influenza A virus has been hiding a gene in its small negative-sense RNA genome. An overlapping open reading frame was found contained in the PA viral RNA polymerase gene, which is accessed by ribosomal frameshifting to produce a fusion protein containing the N-terminal messenger RNA (mRNA) endonuclease domain of PA and an alternative C-terminal X domain. The resulting polypeptide, PA-X, selectively degrades host mRNAs and, in a mouse model of infection, modulated cellular immune responses, thus limiting viral pathogenesis. A previously unidentified influenza protein, partly old and partly new, turns off the expression of host genes. Influenza A virus (IAV) infection leads to variable and imperfectly understood pathogenicity. We report that segment 3 of the virus contains a second open reading frame (“X-ORF”), accessed via ribosomal frameshifting. The frameshift product, termed PA-X, comprises the endonuclease domain of the viral PA protein with a C-terminal domain encoded by the X-ORF and functions to repress cellular gene expression. PA-X also modulates IAV virulence in a mouse infection model, acting to decrease pathogenicity. Loss of PA-X expression leads to changes in the kinetics of the global host response, which notably includes increases in inflammatory, apoptotic, and T lymphocyte–signaling pathways. Thus, we have identified a previously unknown IAV protein that modulates the host response to infection, a finding with important implications for understanding IAV pathogenesis.


Journal of Virology | 2009

A Complicated Message: Identification of a Novel PB1-Related Protein Translated from Influenza A Virus Segment 2 mRNA

Helen Wise; Ágnes Foeglein; Jiechao Sun; Rosa M. Dalton; Sheetal Patel; Wendy A. Howard; Emma C. Anderson; Wendy S. Barclay; Paul Digard

ABSTRACT Influenza A virus segment 2 is known to encode two polypeptides in overlapping open reading frames: PB1, the polymerase, and PB1-F2, a proapoptotic virulence factor. We show that a third major polypeptide is synthesized from PB1 mRNA via differential AUG codon usage. PB1 codon 40 directs translation of an N-terminally truncated version of the polypeptide (N40) that lacks transcriptase function but nevertheless interacts with PB2 and the polymerase complex in the cellular environment. Importantly, the expression of N40, PB1-F2, and PB1 are interdependent, and certain mutations previously used to ablate PB1-F2 production affected N40 accumulation. Removal of the PB1-F2 AUG upregulated N40 synthesis, while truncating PB1-F2 after codon 8 (with a concomitant M40I change in PB1) abolished N40 expression. A virus lacking both N40 and PB1-F2 replicated normally. However, viruses that did not express N40 but retained an intact PB1-F2 gene overexpressed PB1 early in infection and replicated slowly in tissue culture. Thus, the influenza A virus proteome includes a 12th primary translation product that (similarly to PB1-F2) is nonessential for virus viability but whose loss, in particular genetic backgrounds, is detrimental to virus replication.


Journal of Virology | 2001

Interaction of the Influenza Virus Nucleoprotein with the Cellular CRM1-Mediated Nuclear Export Pathway

Debra Elton; Martha Simpson-Holley; Kate Archer; Liz Medcalf; Roger Hallam; John W. McCauley; Paul Digard

ABSTRACT Influenza virus transcription occurs in the nuclei of infected cells, where the viral genomic RNAs are complexed with a nucleoprotein (NP) to form ribonucleoprotein (RNP) structures. Prior to assembly into progeny virions, these RNPs exit the nucleus and accumulate in the cytoplasm. The mechanisms responsible for RNP export are only partially understood but have been proposed to involve the viral M1 and NS2 polypeptides. We found that the drug leptomycin B (LMB), which specifically inactivates the cellular CRM1 polypeptide, caused nuclear retention of NP in virus-infected cells, indicating a role for the CRM1 nuclear export pathway in RNP egress. However, no alteration was seen in the cellular distribution of M1 or NS2, even in the case of a mutant virus which synthesizes greatly reduced amounts of NS2. Furthermore, NP was distributed throughout the nuclei of infected cells at early times postinfection but, when retained in the nucleus at late times by LMB treatment, was redistributed to the periphery of the nucleoplasm. No such change was seen in the nuclear distribution of M1 or NS2 after drug treatment. Similar to the behavior of NP, M1 and NS2 in infected cells, LMB treatment of cells expressing each polypeptide in isolation caused nuclear retention of NP but not M1 or NS2. Conversely, overexpression of CRM1 caused increased cytoplasmic accumulation of NP but had little effect on M1 or NS2 distribution. Consistent with this, NP bound CRM1 in vitro. Overall, these data raise the possibility that RNP export is mediated by a direct interaction between NP and the cellular CRM1 export pathway.


Journal of General Virology | 2010

Genome packaging in influenza A virus.

Edward C. Hutchinson; Johann C. von Kirchbach; Julia R. Gog; Paul Digard

The negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.


Nucleic Acids Research | 2007

Codon conservation in the influenza A virus genome defines RNA packaging signals

Julia R. Gog; Emmanuel Dos Santos Afonso; Rosa M. Dalton; India Leclercq; Laurence Tiley; Debra Elton; Johann C. von Kirchbach; Nadia Naffakh; Nicolas Escriou; Paul Digard

Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.


PLOS Pathogens | 2012

Identification of a Novel Splice Variant Form of the Influenza A Virus M2 Ion Channel with an Antigenically Distinct Ectodomain

Helen Wise; Edward C. Hutchinson; Brett W. Jagger; Amanda D. Stuart; Zi H. Kang; Nicole C. Robb; Louis M. Schwartzman; John C. Kash; Ervin Fodor; Andrew E. Firth; Julia R. Gog; Jeffery K. Taubenberger; Paul Digard

Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.


Journal of Virology | 2010

The Rab11 Pathway Is Required for Influenza A Virus Budding and Filament Formation

Emily A. Bruce; Paul Digard; Amanda D. Stuart

ABSTRACT Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.

Collaboration


Dive into the Paul Digard's collaboration.

Top Co-Authors

Avatar

Helen Wise

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liz Medcalf

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Brett W. Jagger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliot Read

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Julia R. Gog

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge