Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dedeepya Vaka is active.

Publication


Featured researches published by Dedeepya Vaka.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Cancer Discovery | 2013

A Drug Repositioning Approach Identifies Tricyclic Antidepressants as Inhibitors of Small Cell Lung Cancer and Other Neuroendocrine Tumors

Nadine S. Jahchan; Joel T. Dudley; Pawel K. Mazur; Natasha M. Flores; Dian Yang; Alec Palmerton; Anne Flore Zmoos; Dedeepya Vaka; Kim Q.t. Tran; Margaret Zhou; Karolina Krasinska; Jonathan W. Riess; Joel W. Neal; Purvesh Khatri; Kwon S. Park; Atul J. Butte; Julien Sage

UNLABELLED Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We used a systematic drug repositioning bioinformatics approach querying a large compendium of gene expression profiles to identify candidate U.S. Food and Drug Administration (FDA)-approved drugs to treat SCLC. We found that tricyclic antidepressants and related molecules potently induce apoptosis in both chemonaïve and chemoresistant SCLC cells in culture, in mouse and human SCLC tumors transplanted into immunocompromised mice, and in endogenous tumors from a mouse model for human SCLC. The candidate drugs activate stress pathways and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled receptors. The candidate drugs inhibit the growth of other neuroendocrine tumors, including pancreatic neuroendocrine tumors and Merkel cell carcinoma. These experiments identify novel targeted strategies that can be rapidly evaluated in patients with neuroendocrine tumors through the repurposing of approved drugs. SIGNIFICANCE Our work shows the power of bioinformatics-based drug approaches to rapidly repurpose FDA-approved drugs and identifies a novel class of molecules to treat patients with SCLC, a cancer for which no effective novel systemic treatments have been identified in several decades. In addition, our experiments highlight the importance of novel autocrine mechanisms in promoting the growth of neuroendocrine tumor cells.


Cancer Cell | 2013

A Rare Population of CD24+ITGB4+Notchhi Cells Drives Tumor Propagation in NSCLC and Requires Notch3 for Self-Renewal

Yanyan Zheng; Cecile de la Cruz; Leanne C. Sayles; Chris Alleyne-Chin; Dedeepya Vaka; Tim D. Knaak; Marty Bigos; Yue Xu; Chuong D. Hoang; Joseph B. Shrager; Hans Joerg Fehling; Dorothy French; William F. Forrest; Zhaoshi Jiang; Richard A. D. Carano; Kai H. Barck; Erica Jackson; E. Alejandro Sweet-Cordero

Sustained tumor progression has been attributed to a distinct population of tumor-propagating cells (TPCs). To identify TPCs relevant to lung cancer pathogenesis, we investigated functional heterogeneity in tumor cells isolated from Kras-driven mouse models of non-small-cell lung cancer (NSCLC). CD24(+)ITGB4(+)Notch(hi) cells are capable of propagating tumor growth in both a clonogenic and an orthotopic serial transplantation assay. While all four Notch receptors mark TPCs, Notch3 plays a nonredundant role in tumor cell propagation in two mouse models and in human NSCLC. The TPC population is enriched after chemotherapy, and the gene signature of mouse TPCs correlates with poor prognosis in human NSCLC. The role of Notch3 in tumor propagation may provide a therapeutic target for NSCLC.


Cell Stem Cell | 2015

Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis

Michael S. Kareta; Laura L. Gorges; Sana Hafeez; Bérénice A. Benayoun; Samuele Marro; Anne-Flore Zmoos; Matthew J. Cecchini; Damek V. Spacek; Luis F.Z. Batista; Megan O’Brien; Yi-Han Ng; Cheen Euong Ang; Dedeepya Vaka; Steven E. Artandi; Frederick A. Dick; Anne Brunet; Julien Sage; Marius Wernig

Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function.


Cancer Research | 2014

A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma

Ron Chen; Purvesh Khatri; Pawel K. Mazur; Polin M; Yanyan Zheng; Dedeepya Vaka; Chuong D. Hoang; Joseph B. Shrager; Yue Xu; Silvestre Vicent; Atul J. Butte; Sweet-Cordero Ea

Lung cancer remains the most common cause of cancer-related death worldwide and it continues to lack effective treatment. The increasingly large and diverse public databases of lung cancer gene expression constitute a rich source of candidate oncogenic drivers and therapeutic targets. To define novel targets for lung adenocarcinoma, we conducted a large-scale meta-analysis of genes specifically overexpressed in adenocarcinoma. We identified an 11-gene signature that was overexpressed consistently in adenocarcinoma specimens relative to normal lung tissue. Six genes in this signature were specifically overexpressed in adenocarcinoma relative to other subtypes of non-small cell lung cancer (NSCLC). Among these genes was the little studied protein tyrosine kinase PTK7. Immunohistochemical analysis confirmed that PTK7 is highly expressed in primary adenocarcinoma patient samples. RNA interference-mediated attenuation of PTK7 decreased cell viability and increased apoptosis in a subset of adenocarcinoma cell lines. Further, loss of PTK7 activated the MKK7-JNK stress response pathway and impaired tumor growth in xenotransplantation assays. Our work defines PTK7 as a highly and specifically expressed gene in adenocarcinoma and a potential therapeutic target in this subset of NSCLC.


Journal of Clinical Investigation | 2014

Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis

Michelle Marques Howarth; David Simpson; Siu P. Ngok; Bethsaida Nieves; Ron Chen; Zurab Siprashvili; Dedeepya Vaka; Marcus Breese; Brian D. Crompton; Gabriela Alexe; Doug S. Hawkins; Damon Jacobson; Alayne L Brunner; Robert B. West; Jaume Mora; Kimberly Stegmaier; Paul A. Khavari; E. Alejandro Sweet-Cordero

Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma-associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.


Cell Reports | 2014

Organ Size Control Is Dominant over Rb Family Inactivation to Restrict Proliferation In Vivo

Ursula Ehmer; Anne-Flore Zmoos; Raymond K. Auerbach; Dedeepya Vaka; Atul J. Butte; Mark A. Kay; Julien Sage

In mammals, a cells decision to divide is thought to be under the control of the Rb/E2F pathway. We previously found that inactivation of the Rb family of cell cycle inhibitors (Rb, p107, and p130) in quiescent liver progenitors leads to uncontrolled division and cancer initiation. Here, we show that, in contrast, deletion of the entire Rb gene family in mature hepatocytes is not sufficient for their long-term proliferation. The cell cycle block in Rb family mutant hepatocytes is independent of the Arf/p53/p21 checkpoint but can be abrogated upon decreasing liver size. At the molecular level, we identify YAP, a transcriptional regulator involved in organ size control, as a factor required for the sustained expression of cell cycle genes in hepatocytes. These experiments identify a higher level of regulation of the cell cycle in vivo in which signals regulating organ size are dominant regulators of the core cell cycle machinery.


Oncotarget | 2016

Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress

Sekyung Oh; Ryan A. Flynn; Stephen N. Floor; James Purzner; Lance Martin; Brian T. Do; Simone Schubert; Dedeepya Vaka; Sorana Morrissy; Yisu Li; Marcel Kool; Volker Hovestadt; David T. W. Jones; Paul A. Northcott; Thomas Risch; Hans Jörg Warnatz; Marie-Laure Yaspo; Christopher M. Adams; Ryan Leib; Marcus Breese; Marco A. Marra; David Malkin; Peter Lichter; Jennifer A. Doudna; Stefan M. Pfister; Michael D. Taylor; Howard Y. Chang; Yoon-Jae Cho

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3′s interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5′UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3′s role in this process. Arsenite-induced stress shifts DDX3 binding from the 5′UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Cancer Discovery | 2017

BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer

Shin-Heng Chiou; Viviana I. Risca; Gordon Wang; Dian Yang; Barbara M. Grüner; Arwa Kathiria; Rosanna K. Ma; Dedeepya Vaka; Pauline Chu; Margaret M. Kozak; Laura Castellini; Edward E. Graves; Grace E. Kim; Philippe Mourrain; Albert C. Koong; Amato J. Giaccia; Monte M. Winslow

Pancreatic ductal adenocarcinoma (PDAC) is one of the most metastatic and deadly cancers. Despite the clinical significance of metastatic spread, our understanding of molecular mechanisms that drive PDAC metastatic ability remains limited. By generating a genetically engineered mouse model of human PDAC, we uncover a transient subpopulation of cancer cells with exceptionally high metastatic ability. Global gene expression profiling and functional analyses uncovered the transcription factor BLIMP1 as a driver of PDAC metastasis. The highly metastatic PDAC subpopulation is enriched for hypoxia-induced genes, and hypoxia-mediated induction of BLIMP1 contributes to the regulation of a subset of hypoxia-associated gene expression programs. These findings support a model in which upregulation of BLIMP1 links microenvironmental cues to a metastatic stem cell character.Significance: PDAC is an almost uniformly lethal cancer, largely due to its tendency for metastasis. We define a highly metastatic subpopulation of cancer cells, uncover a key transcriptional regulator of metastatic ability, and define hypoxia as an important factor within the tumor microenvironment that increases metastatic proclivity. Cancer Discov; 7(10); 1184-99. ©2017 AACR.See related commentary by Vakoc and Tuveson, p. 1067This article is highlighted in the In This Issue feature, p. 1047.


Cancer Research | 2016

Abstract A35: Characterization of the genomic landscape of osteosarcoma metastasis

Amanda Koehne; Leanne C. Sayles; Marcus Breese; Dedeepya Vaka; Alejandro Sweet-Cordero

Early metastasis to the lungs is a cardinal feature of osteosarcoma (OS), and complications from metastatic disease remain the most common cause of cancer-related death. Despite the prevalence of metastasis in OS, the pathogenesis is poorly understood. We have established a collection of 16 patient-derived xenografts (PDX) from human OS tumors, both from the primary site as well as metastasis. Our collection includes 9 diagnostic biopsies from primary site tumors, 2 primary tumor resections, 3 lung metastases, and 1 ascites fluid metastasis. Gene expression analysis of an initial set of 5 PDX models (3 metastases, 2 primaries) has been completed. A more extensive analysis of all 16 models by RNAseq and WGS is currently underway. Preliminary gene expression analysis identified a significant number of genes differentially expressed between metastatic samples and non-metastatic samples. This list included genes associated with cell adhesion and motility such as MEGF10, genes associated with endochondral ossification and bone remodeling such as RANKL, and genes associated with deposition of extracellular matrix (ECM) such as COL21A. Another candidate gene, ENPP1, is responsible for mineralization of the ECM and has been implicated in breast cancer metastasis to bone. We have validated differential expression of a number of these genes in independent samples of metastatic OS. We are currently using small hairpin RNA (shRNA), CRISPR, and overexpression vectors to knockdown, silence, and overexpress ENPP1 and other candidate genes in OS cell lines. Using in vitro migration and invasion assays as well as intravenous injection and orthotopic mouse models, we are characterizing the contribution of candidate genes to the metastatic propensity of OS. Citation Format: Amanda L. Koehne, Leanne C. Sayles, Marcus R. Breese, Dedeepya Vaka, Alejandro Sweet-Cordero. Characterization of the genomic landscape of osteosarcoma metastasis. [abstract]. In: Proceedings of the AACR Special Conference on Advances in Pediatric Cancer Research: From Mechanisms and Models to Treatment and Survivorship; 2015 Nov 9-12; Fort Lauderdale, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(5 Suppl):Abstract nr A35.

Collaboration


Dive into the Dedeepya Vaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atul J. Butte

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge