Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deepak Gurbani is active.

Publication


Featured researches published by Deepak Gurbani.


Proceedings of the National Academy of Sciences of the United States of America | 2014

In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C.

John C. Hunter; Deepak Gurbani; Scott B. Ficarro; Martin Carrasco; Sang Min Lim; Hwan Geun Choi; Ting Xie; Jarrod A. Marto; Zhe Chen; Nathanael S. Gray; Kenneth D. Westover

Significance SML-8-73-1 (SML) is the first example, to our knowledge, of a GTP-competitive inhibitor of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras). A high-resolution structure of K-Ras G12C bound to SML shows K-Ras in an inactive conformation. In situ proteomic-based chemical profiling of SML demonstrates that SML is highly selective for K-Ras G12C over other small GTPases. A novel chemosensor-based assay allows measurement of covalent reaction rates between K-Ras G12C and SML and enables characterization of this reaction in the context of millimolar concentrations of GTP and GDP, well in exccss of what is found in living cells. These results demonstrate that even in the presence of high concentrations of GTP and GDP, SML is able to exchange into the GN site. Directly targeting oncogenic V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras) with small-molecule inhibitors has historically been considered prohibitively challenging. Recent reports of compounds that bind directly to the K-Ras G12C mutant suggest avenues to overcome key obstacles that stand in the way of developing such compounds. We aim to target the guanine nucleotide (GN)-binding pocket because the natural contents of this pocket dictate the signaling state of K-Ras. Here, we characterize the irreversible inhibitor SML-8-73-1 (SML), which targets the GN-binding pocket of K-Ras G12C. We report a high-resolution X-ray crystal structure of G12C K-Ras bound to SML, revealing that the compound binds in a manner similar to GDP, forming a covalent linkage with Cys-12. The resulting conformation renders K-Ras in the open, inactive conformation, which is not predicted to associate productively with or activate downstream effectors. Conservation analysis of the Ras family GN-binding pocket reveals variability in the side chains surrounding the active site and adjacent regions, especially in the switch I region. This variability may enable building specificity into new iterations of Ras and other GTPase inhibitors. High-resolution in situ chemical proteomic profiling of SML confirms that SML effectively discriminates between K-Ras G12C and other cellular GTP-binding proteins. A biochemical assay provides additional evidence that SML is able to compete with millimolar concentrations of GTP and GDP for the GN-binding site.


Nature Chemical Biology | 2014

Pharmacological targeting of the pseudokinase Her3

Ting Xie; Sang M in Lim; Kenneth D. Westover; Michael E. Dodge; Dalia Ercan; Scott B. Ficarro; Durga Udayakumar; Deepak Gurbani; Hyun Seop Tae; Steven M. Riddle; Taebo Sim; Jarrod A. Marto; Pasi A. Jänne; Craig M. Crews; Nathanael S. Gray

Her3 (ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be “undruggable” using ATP-competitive small molecules because it lacks significant kinase activity. Here we report the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3 dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3 dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and the approximately 60 other pseudokinases found in human cells.


Molecular Cancer Research | 2015

Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.

John C. Hunter; Anuj Manandhar; Martin Carrasco; Deepak Gurbani; Sudershan Gondi; Kenneth D. Westover

KRAS mutations are the most common genetic abnormalities in cancer, but the distribution of specific mutations across cancers and the differential responses of patients with specific KRAS mutations in therapeutic clinical trials suggest that different KRAS mutations have unique biochemical behaviors. To further explain these high-level clinical differences and to explore potential therapeutic strategies for specific KRAS isoforms, we characterized the most common KRAS mutants biochemically for substrate binding kinetics, intrinsic and GTPase-activating protein (GAP)–stimulated GTPase activities, and interactions with the RAS effector, RAF kinase. Of note, KRAS G13D shows rapid nucleotide exchange kinetics compared with other mutants analyzed. This property can be explained by changes in the electrostatic charge distribution of the active site induced by the G13D mutation as shown by X-ray crystallography. High-resolution X-ray structures are also provided for the GDP-bound forms of KRAS G12V, G12R, and Q61L and reveal additional insight. Overall, the structural data and measurements, obtained herein, indicate that measurable biochemical properties provide clues for identifying KRAS-driven tumors that preferentially signal through RAF. Implications: Biochemical profiling and subclassification of KRAS-driven cancers will enable the rational selection of therapies targeting specific KRAS isoforms or specific RAS effectors. Mol Cancer Res; 13(9); 1325–35. ©2015 AACR.


Journal of Medicinal Chemistry | 2015

Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

Li Tan; Tyzoon K. Nomanbhoy; Deepak Gurbani; Matthew P. Patricelli; John C. Hunter; Jiefei Geng; Lina Herhaus; Jianming Zhang; Eduardo Pauls; Youngjin Ham; Hwan Geun Choi; Ting Xie; Xianming Deng; Sara J. Buhrlage; Taebo Sim; Philip Cohen; Gopal P. Sapkota; Kenneth D. Westover; Nathanael S. Gray

We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2015

Development of small molecules targeting the pseudokinase Her3

Sang Min Lim; Ting Xie; Kenneth D. Westover; Scott B. Ficarro; Hyun Seop Tae; Deepak Gurbani; Taebo Sim; Jarrod A. Marto; Pasi A. Jänne; Craig M. Crews; Nathanael S. Gray

Her3 is a member of the human epidermal growth factor receptor (EGFR) tyrosine kinase family, and it is often either overexpressed or deregulated in many types of human cancer. Her3 has not been the subject of small-molecule inhibitor development because it is a pseudokinase and does not possess appreciable kinase activity. We recently reported on the development of the first selective irreversible Her3 ligand (TX1-85-1) that forms a covalent bond with cysteine 721 which is unique to Her3 among all kinases. We also developed a bi-functional compound (TX2-121-1) containing a hydrophobic adamantane moiety and the same warhead of TX1-85-1 that is capable of inhibiting Her3-dependent signaling and growth. Here we report on the structure-based medicinal chemistry effort that resulted in the discovery of these two compounds.


Journal of Biological Chemistry | 2017

Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine

Wayne Harshbarger; Sudershan Gondi; Scott B. Ficarro; John C. Hunter; Durga Udayakumar; Deepak Gurbani; William D. Singer; Yan Liu; Lianbo Li; Jarrod A. Marto; Kenneth D. Westover

Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation.


Molecular Cancer | 2017

MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis

Yan Yang; Lili Ding; Qun Hu; Jia Xia; Junjie Sun; Xudong Wang; Hua Xiong; Deepak Gurbani; Lianbo Li; Yan Liu; Aiguo Liu

BackgroundAberrant expression of microRNAs in different human cancer types has been widely reported. MiR-218 acts as a tumor suppressor in diverse human cancer types impacting regulation of multiple genes in oncogenic pathways. Here, we evaluated the expression and function of miR-218 in human lung cancer and ALDH positive lung cancer cells to understand the potential mechanisms responsible for disease pathology. Also, the association between its host genes and the target genes could be useful towards the better understanding of prognosis in clinical settings.MethodsPublicly-available data from The Cancer Genome Atlas (TCGA) was mined to compare the levels of miR-218 and its host gene SLIT2/3 between lung cancer tissues and normal lung tissues. Transfection of miR-218 to investigate its function in lung cancer cells was done and in vivo effects were determined using miR-218 expressing lentiviruses. Aldefluor assay and Flow cytometry was used to quantify and enrich ALDH positive lung cancer cells. Levels of miR-218, IL-6R, JAK3 and phosphorylated STAT3 were compared in ALDH1A1 positive and ALDH1A1 negative cells. Overexpression of miR-218 in ALDH positive cells was carried to test the survival by tumorsphere culture. Finally, utilizing TCGA data we studied the association of target genes of miR-218 with the prognosis of lung cancer.ResultsWe observed that the expression of miR-218 was significantly down-regulated in lung cancer tissues compared to normal lung tissues. Overexpression of miR-218 decreased cell proliferation, invasion, colony formation, and tumor sphere formation in vitro and repressed tumor growth in vivo. We further found that miR-218 negatively regulated IL-6 receptor and JAK3 gene expression by directly targeting the 3′-UTR of their mRNAs. In addition, the levels of both miR-218 host genes and the components of IL-6/STAT3 pathway correlated with prognosis of lung cancer patients.ConclusionsMiR-218 acts as a tumor suppressor in lung cancer via IL-6/STAT3 signaling pathway regulation.


Data in Brief | 2015

Structural dataset for the fast-exchanging KRAS G13D

Jia Lu; John C. Hunter; Anuj Manandhar; Deepak Gurbani; Kenneth D. Westover

Cancers bearing the KRAS G13D mutation are notable for their distinct clinical behavior relative to other oncogenic KRAS mutations. We hypothesized that primary biochemical or biophysical properties of KRAS G13D might contribute to these clinical observations and as part of our study undertook structural studies using x-ray crystallography. In this data article we discuss several x-ray diffraction datasets that yielded structures of oncogenic KRAS mutants including a high resolution (1.13 Å) structure of KRAS G13D. The datasets are typical for high resolution x-ray diffraction data and allow the construction of atomic resolution, three dimensional structural models with high confidence. This data can be correlated with biochemical information such as defects in substrate binding kinetics, GTPase activities and interactions with the RAS effector RAF kinase.


Chemistry & Biology | 2017

Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease

Juliane Totzke; Deepak Gurbani; Rene Raphemot; Philip F. Hughes; Khaldon Bodoor; David A. Carlson; David Loiselle; Asim K. Bera; Liesl S. Eibschutz; Marisha M. Perkins; Amber L. Eubanks; Phillip L. Campbell; David A. Fox; Kenneth D. Westover; Timothy A. J. Haystead; Emily R. Derbyshire

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Bioorganic & Medicinal Chemistry | 2017

Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors

Li Tan; Deepak Gurbani; Ellen Weisberg; Douglas S. Jones; Suman Rao; William D. Singer; Faviola M. Bernard; Annie P. Jenney; Guangyan Du; Atsushi Nonami; James D. Griffin; Douglas A. Lauffenburger; Kenneth D. Westover; Peter K. Sorger; Nathanael S. Gray

Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles. Compound 5 exhibited the greatest potency in RAS-mutated and wild-type RAS cell lines from various cancer types. A biotinylated derivative of 5, 27, was used to verify TAK1 binding in cells. The newly described inhibitors constitute useful tools for further development of multi-targeting TAK1-centered inhibitors for cancer and other diseases.

Collaboration


Dive into the Deepak Gurbani's collaboration.

Top Co-Authors

Avatar

Kenneth D. Westover

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John C. Hunter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anuj Manandhar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge