Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod A. Marto is active.

Publication


Featured researches published by Jarrod A. Marto.


Science | 2011

The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling

Peggy P. Hsu; Seong A. Kang; Jonathan Rameseder; Yi Zhang; Kathleen Ottina; Daniel Lim; Timothy R. Peterson; Yongmun Choi; Nathanael S. Gray; Michael B. Yaffe; Jarrod A. Marto; David M. Sabatini

A search for substrates of a growth-promoting kinase revealed a regulatory feedback loop involved in tumor suppression. The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.


Journal of Biological Chemistry | 2003

Phosphoproteome Analysis of Capacitated Human Sperm EVIDENCE OF TYROSINE PHOSPHORYLATION OF A KINASE-ANCHORING PROTEIN 3 AND VALOSIN-CONTAINING PROTEIN/p97 DURING CAPACITATION

Scott B. Ficarro; Olga Chertihin; V. Anne Westbrook; Forest M. White; Friederike L. Jayes; Petr Kalab; Jarrod A. Marto; Jeffrey Shabanowitz; John C. Herr; Donald F. Hunt; Pablo E. Visconti

Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.


Nature | 2012

Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins

Orit Rozenblatt-Rosen; Rahul C. Deo; Megha Padi; Guillaume Adelmant; Michael A. Calderwood; Thomas Rolland; Miranda Grace; Amélie Dricot; Manor Askenazi; Maria Lurdes Tavares; Sam Pevzner; Fieda Abderazzaq; Danielle Byrdsong; Anne-Ruxandra Carvunis; Alyce A. Chen; Jingwei Cheng; Mick Correll; Melissa Duarte; Changyu Fan; Scott B. Ficarro; Rachel Franchi; Brijesh K. Garg; Natali Gulbahce; Tong Hao; Amy M. Holthaus; Robert James; Anna Korkhin; Larisa Litovchick; Jessica C. Mar; Theodore R. Pak

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype–phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or ‘passenger’, cancer mutations from causal, or ‘driver’, mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.


Rapid Communications in Mass Spectrometry | 1996

Electrospray Ionization Fourier Transform Ion Cyclotron Resonance at 9.4 T

Michael W. Senko; Christopher L. Hendrickson; Ljiljana Paša-Tolić; Jarrod A. Marto; Forest M. White; Shenheng Guan; Alan G. Marshall

We present the first results from a new electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer operated at a magnetic field of 9.4 T (i.e. > or = 2.4 T higher than for any prior FTICR instrument). The 9.4 T instrument provides substantially improved performance for large molecules (> or = 50% increase in mass resolving power) and complex mixtures (> or = 100% increase in dynamic range) compared to lower-field (< or = 6 T) instruments. The higher magnetic field makes possible larger trapped-ion population without introduction of significant space--charge effects such as spectral peak shift and/or distortion, and coalescence of closely-spaced resonances. For bovine ubiquitin (8.6 kDa) we observe accurate relative isotopic abundances at a signal-to-noise ratio greater than 1000:1, whereas a complete nozzle-skimmer dissociation electrospray ionization (ESI) FTICR mass spectrum of bovine carbonic anhydrase (29 kDa) is achieved from a single scan with a signal-to-noise ratio of more than 250:1. Finally, we are able to obtain mass resolving power, m/delta m > 200,000, routinely for porcine serum albumin (67 kDa). The present performance guides further modifications of the instrument, which should lead to significant further improvements.


Cancer Research | 2010

Inhibition of ALK, PI3K/MEK, and HSP90 in Murine Lung Adenocarcinoma Induced by EML4-ALK Fusion Oncogene

Zhao Chen; Takaaki Sasaki; Xiaohong Tan; Julian Carretero; Takeshi Shimamura; Danan Li; Chunxiao Xu; Yuchuan Wang; Guillaume Adelmant; Marzia Capelletti; Hyun Joo Lee; Scott J. Rodig; Christa L. Borgman; Seung Il Park; Hyeong Ryul Kim; Robert F. Padera; Jarrod A. Marto; Nathanael S. Gray; Andrew L. Kung; Geoffrey I. Shapiro; Pasi A. Jänne; Kwok-Kin Wong

Genetic rearrangements of the anaplastic lymphoma kinase (ALK) kinase occur in 3% to 13% of non-small cell lung cancer patients and rarely coexist with KRASor EGFR mutations. To evaluate potential treatment strategies for lung cancers driven by an activated EML4-ALK chimeric oncogene, we generated a genetically engineered mouse model that phenocopies the human disease where this rearranged gene arises. In this model, the ALK kinase inhibitor TAE684 produced greater tumor regression and improved overall survival compared with carboplatin and paclitaxel, representing clinical standard of care. 18F-FDG-PET-CT scans revealed almost complete inhibition of tumor metabolic activity within 24 hours of TAE684 exposure. In contrast, combined inhibition of the PI3K/AKT and MEK/ERK1/2 pathways did not result in significant tumor regression. We identified EML4-ALK in complex with multiple cellular chaperones including HSP90. In support of a functional reliance, treatment with geldanamycin-based HSP90 inhibitors resulted in rapid degradation of EML4-ALK in vitro and substantial, albeit transient, tumor regression in vivo. Taken together, our findings define a murine model that offers a reliable platform for the preclinical comparison of combinatorial treatment approaches for lung cancer characterized by ALK rearrangement.


Oncogene | 2010

Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis

Keren Levanon; Vivian Ng; Huiying Piao; Yi Zhang; Martin C. Chang; Michael H. Roh; David Kindelberger; Michelle S. Hirsch; Christopher P. Crum; Jarrod A. Marto; Ronny Drapkin

Recent studies suggest that some serous ovarian carcinomas (SOCs) arise from the fallopian tube (FT) epithelium rather than the ovarian surface epithelium. This hypothesis places emphasis on the FT secretory epithelial cell as a cell-of-origin. Herein, we report the development of a novel ex vivo primary human FT epithelium culture system that faithfully recapitulates the in vivo epithelium, as shown by morphological, ultrastructural and immunophenotypic analyses. Mass spectrometry-based proteomics reveal that these cultures secrete proteins previously identified as biomarkers for ovarian cancer. We also use this culture system to study the response of the FT epithelium to genotoxic stress and find that the secretory cells exhibit a distinct response to DNA damage when compared with neighboring ciliated cells. The secretory cells show a limited ability to resolve the damage over time, potentially leaving them more susceptible to accumulation of additional mutagenic injury. This divergent response is confirmed with in situ studies using tissue samples, further supporting the use of this ex vivo culture system to investigate FT epithelial pathobiology. We anticipate that this novel culture system will facilitate the study of SOC pathogenesis, and propose that similar culture systems could be developed for other organ site-specific epithelia.


Cancer Cell | 2012

Metabolic Signatures Uncover Distinct Targets in Molecular Subsets of Diffuse Large B Cell Lymphoma

Pilar Caro; Amar U. Kishan; Erik Norberg; Illana A. Stanley; Bjoern Chapuy; Scott B. Ficarro; Klaudia Polak; Daniel Tondera; John S. Gounarides; Hong Yin; Feng Zhou; Michael R. Green; Linfeng Chen; Stefano Monti; Jarrod A. Marto; Margaret A. Shipp; Nika N. Danial

Molecular signatures have identified several subsets of diffuse large B cell lymphoma (DLBCL) and rational targets within the B cell receptor (BCR) signaling axis. The OxPhos-DLBCL subset, which harbors the signature of genes involved in mitochondrial metabolism, is insensitive to inhibition of BCR survival signaling but is functionally undefined. We show that, compared with BCR-DLBCLs, OxPhos-DLBCLs display enhanced mitochondrial energy transduction, greater incorporation of nutrient-derived carbons into the tricarboxylic acid cycle, and increased glutathione levels. Moreover, perturbation of the fatty acid oxidation program and glutathione synthesis proved selectively toxic to this tumor subset. Our analysis provides evidence for distinct metabolic fingerprints and associated survival mechanisms in DLBCL and may have therapeutic implications.


Angewandte Chemie | 2014

Therapeutic Targeting of Oncogenic K‐Ras by a Covalent Catalytic Site Inhibitor

Sang Min Lim; Kenneth D. Westover; Scott B. Ficarro; Rane A. Harrison; Hwan Geun Choi; Michael E. Pacold; Martin Carrasco; John C. Hunter; Nam Doo Kim; Ting Xie; Taebo Sim; Pasi A. Jänne; Matthew Meyerson; Jarrod A. Marto; John R. Engen; Nathanael S. Gray

We report the synthesis of a GDP analogue, SML-8-73-1, and a prodrug derivative, SML-10-70-1, which are selective, direct-acting covalent inhibitors of the K-Ras G12C mutant relative to wild-type Ras. Biochemical and biophysical measurements suggest that modification of K-Ras with SML-8-73-1 renders the protein in an inactive state. These first-in-class covalent K-Ras inhibitors demonstrate that irreversible targeting of the K-Ras guanine-nucleotide binding site is potentially a viable therapeutic strategy for inhibition of Ras signaling.


PLOS Pathogens | 2009

Viral Mimicry of Cdc2/cyclin-dependent Kinase 1 Mediates Disruption of Nuclear Lamina during Human Cytomegalovirus Nuclear Egress

Sofia Hamirally; Jeremy P. Kamil; Yasmine Ndassa-Colday; Alison J. Lin; Wan Jin Jahng; Moon-Chang Baek; Sarah L. Noton; Laurie A. Silva; Martha Simpson-Holley; David M. Knipe; David E. Golan; Jarrod A. Marto; Donald M. Coen

The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.


Analytical Chemistry | 2008

Niobium(V) oxide (Nb2O5): application to phosphoproteomics.

Scott B. Ficarro; Jignesh R. Parikh; Nathaniel C. Blank; Jarrod A. Marto

Proteomics-based analysis of signaling cascades relies on a growing suite of affinity resins and methods aimed at efficient enrichment of phosphorylated peptides from complex biological mixtures. Given the heterogeneity of phosphopeptides and the overlap in chemical properties between phospho- and unmodified peptides, it is likely that the use of multiple resins will provide the best combination of specificity, yield, and coverage for large-scale proteomics studies. Recently titanium and zirconium dioxides have been used successfully for enrichment of phosphopeptides. Here we report the first demonstration that niobium pentoxide (Nb 2O 5) provides for efficient enrichment and recovery ( approximately 50-100%) of phosphopeptides from simple mixtures and facilitates identification of several hundred putative sites of phosphorylation from cell lysate. Comparison of phosphorylated peptides identified from Nb 2O 5 and TiO 2 with sequences in the PhosphoELM database suggests a useful degree of divergence in the selectivity of these metal oxide resins. Collectively our data indicate that Nb 2O 5 provides efficient enrichment for phosphopeptides and offers a complementary approach for large-scale phosphoproteomics studies.

Collaboration


Dive into the Jarrod A. Marto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forest M. White

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge