Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deepti Anand is active.

Publication


Featured researches published by Deepti Anand.


Development | 2016

Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression

Dylan S. Audette; Deepti Anand; Tammy So; Troy Rubenstein; Salil A. Lachke; Frank J. Lovicu; Melinda K. Duncan

Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. Summary: RNA-seq and the analyses of mutant mice reveal that Prox1 functions as a global regulator of lens fiber cell gene expression and acts in a feedback loop to control the expression of FGF receptors.


Experimental Eye Research | 2015

Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes

Anne M. Terrell; Deepti Anand; Sylvie Smith; Christine A. Dang; Stephanie Waters; Mallika Pathania; David C. Beebe; Salil A. Lachke

The discovery of cytosolic RNA granule (RG) component proteins associated with human cataract has initiated investigations on post-transcriptional mechanisms of gene expression control in the lens. Application of established mouse lens epithelial cell lines (LECs) can provide rapid insights on RG function in lens cells, especially because mouse mutants in several RG components are not available. However, although these LECs represent potential reagents for such analyses, they are uncharacterized for lens gene expression or RG formation. Therefore, a detailed molecular and cellular characterization of three permanent mouse LECs 17EM15, 21EM15 and αTN4 is performed in this study. Comparative analysis between microarray gene expression datasets on LEC 21EM15 and iSyTE lens tissue demonstrates that 30% of top 200 iSyTE identified lens-enriched genes are expressed in these cells. Majority of these candidates are independently validated to either have lens expression, function or linkage to cataract. Moreover, analysis of microarray data with genes described in Cat-Map, an online database of cataract associated genes and loci, demonstrates that 131 genes linked to cataract loci are expressed in 21EM15 cells. Furthermore, gene expression in LECs is compared to isolated lens epithelium or fiber cells by qRT-PCR and by comparative analyses with publically available epithelium or fiber-specific microarray and RNA-seq (sequencing) datasets. Expression of select candidate genes was validated by regular and real-time quantitative RT-PCR. Expression of lens epithelium-enriched genes Foxe3, Pax6, Anxa4 and Mcm4 is up-regulated in LEC lines, compared to isolated lens fiber cells. Moreover, similar to isolated lens epithelium, all three LECs exhibit down-regulation of fiber cell-expressed genes Crybb1, Mip and Prox1 when compared to fiber cells. These data indicate that the LEC lines exhibit greater similarity to lens epithelium than to fiber cells. Compared to non-lens cell line NIH3T3, LECs exhibit significantly enriched expression of transcription factors with important function in the lens, namely Pax6, Foxe3 and Prox1. In addition to these genes, all three LECs also express key lens- and cataract-associated genes, namely Dkk3, Epha2, Hsf4, Jag1, Mab21l1, Meis1, Pknox1, Pou2f1, Sfrp1, Sparc, Tdrd7 and Trpm3. Additionally, 21EM15 microarrays indicate expression of Chmp4b, Cryab and Tcfap2a among others important genes. Immunostaining with makers for Processing bodies (P-bodies) and Stress granules (SGs) demonstrates that these classes of RGs are robustly expressed in all three LECs. Moreover, under conditions of stress, 17EM15 and αTN4 exhibit significantly higher numbers of P-bodies and SGs compared to NIH3T3 cells. In sum, these data indicate that mouse LECs 21EM15, 17EM15 and αTN4 express key lens or cataract genes, are similar to lens epithelium than fiber cells, and exhibit high levels of P-bodies and SGs, indicating their suitability for investigating gene expression control and RG function in lens-derived cells.


Experimental Eye Research | 2017

Systems biology of lens development: A paradigm for disease gene discovery in the eye.

Deepti Anand; Salil A. Lachke

Over the past several decades, the biology of the developing lens has been investigated using molecular genetics-based approaches in various vertebrate model systems. These efforts, involving target gene knockouts or knockdowns, have led to major advances in our understanding of lens morphogenesis and the pathological basis of cataracts, as well as of other lens related eye defects. In particular, we now have a functional understanding of regulators such as Pax6, Six3, Sox2, Oct1 (Pou2f1), Meis1, Pnox1, Zeb2 (Sip1), Mab21l1, Foxe3, Tfap2a (Ap2-alpha), Pitx3, Sox11, Prox1, Sox1, c-Maf, Mafg, Mafk, Hsf4, Fgfrs, Bmp7, and Tdrd7 in this tissue. However, whether these individual regulators interact or their targets overlap, and the significance of such interactions during lens morphogenesis, is not well defined. The arrival of high-throughput approaches for gene expression profiling (microarrays, RNA-sequencing (RNA-seq), etc.), which can be coupled with chromatin immunoprecipitation (ChIP) or RNA immunoprecipitation (RIP) assays, along with improved computational resources and publically available datasets (e.g. those containing comprehensive protein-protein, protein-DNA information), presents new opportunities to advance our understanding of the lens tissue on a global systems level. Such systems-level knowledge will lead to the derivation of the underlying lens gene regulatory network (GRN), defined as a circuit map of the regulator-target interactions functional in lens development, which can be applied to expedite cataract gene discovery. In this review, we cover the various systems-level approaches such as microarrays, RNA-seq, and ChIP that are already being applied to lens studies and discuss strategies for assembling and interpreting these vast amounts of high-throughput information for effective dispersion to the scientific community. In particular, we discuss strategies for effective interpretation of this new information in the context of the rich knowledge obtained through the application of traditional single-gene focused experiments on the lens. Finally, we discuss our vision for integrating these diverse high-throughput datasets in a single web-based user-friendly tool iSyTE (integrated Systems Tool for Eye gene discovery) - a resource that is already proving effective in the identification and characterization of genes linked to lens development and cataract. We anticipate that application of a similar approach to other ocular tissues such as the retina and the cornea, and even other organ systems, will significantly impact disease gene discovery.


Human Genetics | 2017

Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract.

Nisha Patel; Deepti Anand; Dorota Monies; Sateesh Maddirevula; Arif O. Khan; Talal Algoufi; Mohammed Al-Owain; Eissa Faqeih; Muneera J. Alshammari; Ahmed Qudair; Hadeel Alsharif; Fatimah Aljubran; Hessa S. Alsaif; Niema Ibrahim; Firdous Abdulwahab; Mais Hashem; Haifa Alsedairy; Mohammed A. Aldahmesh; Salil A. Lachke; Fowzan S. Alkuraya

Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.


Nucleic Acids Research | 2018

iSyTE 2.0: a database for expression-based gene discovery in the eye

Atul Kakrana; Andrian Yang; Deepti Anand; Djordje Djordjevic; S. Deepthi Ramachandruni; Abhyudai Singh; Hongzhan Huang; Joshua W. K. Ho; Salil A. Lachke

Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches.


Birth defects research | 2017

Exome sequencing provides additional evidence for the involvement of ARHGAP29 in Mendelian orofacial clefting and extends the phenotypic spectrum to isolated cleft palate

Huan Liu; Tamara Busch; Steven Eliason; Deepti Anand; Steven A. Bullard; Lord Jephthah Joojo Gowans; Nichole L. Nidey; Aline Petrin; Eno-Abasi Augustine-Akpan; Irfan Saadi; Martine Dunnwald; Salil A. Lachke; Ying Zhu; Adebowale Adeyemo; Brad A. Amendt; Tony Roscioli; Robert A. Cornell; Jeffrey C. Murray

BACKGROUND Recent advances in genomics methodologies, in particular the availability of next-generation sequencing approaches have made it possible to identify risk loci throughout the genome, in particular the exome. In the current study, we present findings from an exome study conducted in five affected individuals of a multiplex family with cleft palate only. METHODS The GEnome MINIng (GEMINI) pipeline was used to functionally annotate the single nucleotide polymorphisms, insertions and deletions. Filtering methods were applied to identify variants that are clinically relevant and present in affected individuals at minor allele frequencies (≤1%) in the 1000 Genomes Project single nucleotide polymorphism database, Exome Aggregation Consortium, and Exome Variant Server databases. The bioinformatics tool Systems Tool for Craniofacial Expression-Based Gene Discovery was used to prioritize cleft candidates in our list of variants, and Sanger sequencing was used to validate the presence of identified variants in affected and unaffected relatives. RESULTS Our analyses approach narrowed the candidates down to the novel missense variant in ARHGAP29 (GenBank: NM_004815.3, NP_004806.3;c.1654T>C [p.Ser552Pro]. A functional assay in zebrafish embryos showed that the encoded protein lacks the activity possessed by its wild-type counterpart, and migration assays revealed that keratinocytes transfected with wild-type ARHGAP29 migrated faster than counterparts transfected with the p.Ser552Pro ARHGAP29 variant or empty vector (control). CONCLUSION These findings reveal ARHGAP29 to be a regulatory protein essential for proper development of the face, identifies an amino acid that is key for this, and provides a potential new diagnostic tool.Birth Defects Research 109:27-37, 2017.


Genomics data | 2015

An integrative approach to analyze microarray datasets for prioritization of genes relevant to lens biology and disease

Deepti Anand; Smriti A. Agrawal; Archana D. Siddam; Hozumi Motohashi; Masayuki Yamamoto; Salil A. Lachke

Microarray-based profiling represents an effective method to analyze cellular or tissue-specific gene expression on the genome-level. However, in comparative analyses between control and mutant samples, microarrays often identify a large number of differentially expressed genes, in turn making it challenging to isolate the select “high-priority candidates” that are most relevant to an observed mutant phenotype. Here, we describe an integrative approach for mouse mutant lens microarray gene expression analysis using publically accessible systems-level information such as wild-type mouse lens expression data in iSyTE (integrated Systems Tool for Eye gene discovery), protein–protein interaction data in public databases, gene ontology enrichment data, and transcription factor binding profile data. This strategy, when applied to small Maf Mafg −/−:Mafk +/− mouse lens microarray datasets (deposited in NCBI Gene Expression Omnibus database with accession number GSE65500) in Agrawal et al. 2015 [1], led to the effective prioritization of candidate genes linked to lens defects in these mutants. Indeed, from the original list of genes that are differentially expressed at ± 1.5-fold and p < 0.05 in Mafg −/−:Mafk +/− mutant lenses, this analysis led to the identification of thirty-six high-priority candidates, in turn reducing the number of genes for further study by approximately 1/3 of the total. Moreover, eight of these genes are linked to mammalian cataract in the published literature, validating the efficacy of this approach. Additionally, these high-priority candidates contribute valuable information for the assembly of a gene regulatory network in the lens. In sum, the pipeline outlined in this report represents an effective approach for initial as well as downstream microarray expression data analysis to identify genes important for lens biology and cataracts. We anticipate that this integrative strategy can be extended to prioritize phenotypically relevant candidate genes from microarray data in other cells and tissues.


Human Mutation | 2018

Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects

Deepti Anand; Smriti A. Agrawal; Anne Slavotinek; Salil A. Lachke

Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss‐of‐function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme‐Gripp syndrome, and facilitates their access through Web‐based databases.


Investigative Ophthalmology & Visual Science | 2017

β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis

Yichen Wang; Anne M. Terrell; Brittany A. Riggio; Deepti Anand; Salil A. Lachke; Melinda K. Duncan

Purpose Previous research showed that the absence of β1-integrin from the mouse lens after embryonic day (E) 13.5 (β1MLR10) leads to the perinatal apoptosis of lens epithelial cells (LECs) resulting in severe microphthalmia. This study focuses on elucidating the molecular connections between β1-integrin deletion and this phenotype. Methods RNA sequencing was performed to identify differentially regulated genes (DRGs) in β1MLR10 lenses at E15.5. By using bioinformatics analysis and literature searching, Egr1 (early growth response 1) was selected for further study. The activation status of certain signaling pathways (focal adhesion kinase [FAK]/Erk, TGF-β, and Akt signaling) was studied via Western blot and immunohistochemistry. Mice lacking both β1-integrin and Egr1 genes from the lenses were created (β1MLR10/Egr1−/−) to study their relationship. Results RNA sequencing identified 120 DRGs that include candidates involved in the cellular stress response, fibrosis, and/or apoptosis. Egr1 was investigated in detail, as it mediates cellular stress responses in various cell types, and is recognized as an upstream regulator of numerous other β1MLR10 lens DRGs. In β1MLR10 mice, Egr1 levels are elevated shortly after β1-integrin loss from the lens. Further, pErk1/2 and pAkt are elevated in β1MLR10 LECs, thus providing the potential signaling mechanism that causes Egr1 upregulation in the mutant. Indeed, deletion of Egr1 from β1MLR10 lenses partially rescues the microphthalmia phenotype. Conclusions β1-integrin regulates the appropriate levels of Erk1/2 and Akt phosphorylation in LECs, whereas its deficiency results in the overexpression of Egr1, culminating in reduced cell survival. These findings provide insight into the molecular mechanism underlying the microphthalmia observed in β1MLR10 mice.


PLOS Genetics | 2018

The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development

Archana D. Siddam; Carole Gautier-Courteille; Linette Perez-Campos; Deepti Anand; Atul Kakrana; Christine A. Dang; Vincent Legagneux; Agnès Méreau; Justine Viet; Jeffrey M. Gross; Luc Paillard; Salil A. Lachke

Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5’ UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.

Collaboration


Dive into the Deepti Anand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Djordje Djordjevic

Victor Chang Cardiac Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge