Deirdre A. Joy
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deirdre A. Joy.
Molecular Microbiology | 2003
Jianbing Mu; Michael T. Ferdig; Xiaorong Feng; Deirdre A. Joy; Junhui Duan; Tetsuya Furuya; G. Subramanian; L. Aravind; Roland A. Cooper; John C. Wootton; Momiao Xiong; Xin-Zhuan Su
Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P‐glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CQ), quinine (QN) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CQ resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CQ and QN. Such molecules may contribute to increasing incidences of QN treatment failure, the molecular basis of which is not understood. To identify additional genes involved in parasite CQ and QN responses, we assayed the in vitro susceptibilities of 97 culture‐adapted cloned isolates to CQ and QN and searched for single nucleotide polymorphisms (SNPs) in DNA encoding 49 putative transporters (total 113 kb) and in 39 housekeeping genes that acted as negative controls. SNPs in 11 of the putative transporter genes, including pfcrt and pfmdr1, showed significant associations with decreased sensitivity to CQ and/or QN in P. falciparum. Significant linkage disequilibria within and between these genes were also detected, suggesting interactions among the transporter genes. This study provides specific leads for better understanding of complex drug resistances in malaria parasites.
Molecular Microbiology | 2004
Michael T. Ferdig; Roland A. Cooper; Jianbing Mu; Bingbing Deng; Deirdre A. Joy; Xin-Zhuan Su; Thomas E. Wellems
Quinine (QN) remains effective against Plasmodium falciparum, but its decreasing efficacy is documented from different continents. Multiple genes are likely to contribute to the evolution of QN resistance. To locate genes contributing to QN response variation, we have searched a P. falciparum genetic cross for quantitative trait loci (QTL). Results identify additive QTL in segments of chromosomes (Chrs) 13, 7 and 5, and pairwise effects from two additional loci of Chrs 9 and 6 that interact, respectively, with the QTL of Chrs 13 and 7. The mapped segments of Chrs 7 and 5 contain pfcrt, the determinant of chloroquine resistance (CQR), and pfmdr1, a gene known to affect QN responses. Association of pfcrt with a QTL of QN resistance supports anecdotal evidence for an evolutionary relationship between CQR and reduced QN sensitivity. The Chr 13 segment contains several candidate genes, one of which (pfnhe‐1) encodes a putative Na+/H+ exchanger. A repeat polymorphism in pfnhe‐1 shows significant association with low QN response in a collection of P. falciparum strains from Asia, Africa and Central and South America. Dissection of the genes and modifiers involved in QN response will require experimental strategies that can evaluate multiple genes from different chromosomes in combination.
PLOS Biology | 2005
Jianbing Mu; Junhui Duan; Kate McGee; Deirdre A. Joy; Gilean McVean; Xin-Zhuan Su
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasites short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.
Nature | 2002
Jianbing Mu; Junhui Duan; Kateryna D. Makova; Deirdre A. Joy; Chuong Q. Huynh; Oralee H. Branch; Wen-Hsiung Li; Xin-zhuan Su
The Malarias Eve hypothesis, proposing a severe recent population bottleneck (about 3,000–5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per ∼2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be ∼100,000–180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Xiaorong Feng; Jane M. Carlton; Deirdre A. Joy; Jianbing Mu; Tetsuya Furuya; Bernard B. Suh; Yufeng Wang; John W. Barnwell; Xin-Zhuan Su
The study of genetic variation in malaria parasites has practical significance for developing strategies to control the disease. Vaccines based on highly polymorphic antigens may be confounded by allelic restriction of the host immune response. In response to drug pressure, a highly plastic genome may generate resistant mutants more easily than a monomorphic one. Additionally, the study of the distribution of genomic polymorphisms may provide information leading to the identification of genes associated with traits such as parasite development and drug resistance. Indeed, the age and diversity of the human malaria parasite Plasmodium falciparum has been the subject of recent debate, because an ancient parasite with a complex genome is expected to present greater challenges for drug and vaccine development. The genome diversity of the important human pathogen Plasmodium vivax, however, remains essentially unknown. Here we analyze an ≈100-kb contiguous chromosome segment from five isolates, revealing 191 single-nucleotide polymorphisms (SNPs) and 44 size polymorphisms. The SNPs are not evenly distributed across the segment with blocks of high and low diversity. Whereas the majority (≈63%) of the SNPs are in intergenic regions, introns contain significantly less SNPs than intergenic sequences. Polymorphic tandem repeats are abundant and are more uniformly distributed at a frequency of about one polymorphic tandem repeat per 3 kb. These data show that P. vivax has a highly diverse genome, and provide useful information for further understanding the genome diversity of the parasite.
Molecular Biology and Evolution | 2008
Deirdre A. Joy; Lilia González-Cerón; Jane M. Carlton; Amy H. Gueye; Michael P. Fay; Thomas F. McCutchan; Xin-Zhuan Su
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasites circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.
The Journal of Infectious Diseases | 2004
Pedro Paulo Vieira; Marcelo U. Ferreira; Maria das Graças Costa Alecrim; Wilson Duarte Alecrim; Luiz Hidelbrando P. da Silva; Moisés M. Sihuincha; Deirdre A. Joy; Jianbing Mu; Xin-Zhuan Su; Mariano Gustavo Zalis
The widespread occurrence of drug-resistant malaria parasites in South America presents a formidable obstacle to disease control in this region. To characterize parasite populations and the chloroquine-resistance profile of Plasmodium falciparum in the Amazon Basin, we analyzed a DNA segment of the pfcrt gene, spanning codons 72-76, and genotyped 15 microsatellite (MS) markers in 98 isolates from 6 areas of Brazil, Peru, and Colombia where malaria is endemic. The K76T mutation, which is critical for chloroquine resistance, was found in all isolates. Five pfcrt haplotypes (S[tct]MNT, S[agt]MNT, CMNT, CMET, and CIET) were observed, including 1 previously found in Asian/African isolates. MS genotyping showed relatively homogeneous genetic backgrounds among the isolates, with an average of 3.8 alleles per marker. Isolates with identical 15-loci MS haplotypes were found in different locations, suggesting relatively free gene flow across the Amazon Basin. Allopatric isolates carrying SMNT and CMNT haplotypes have similar genetic backgrounds, although parasites carrying the CIET haplotype have some exclusive MS alleles, suggesting that parasites with CIET alleles were likely to have been introduced into Brazil from Asia or Africa. This study provides the first evidence of the Asian pfcrt allele in Brazil and a detailed analysis of P. falciparum populations, with respect to pfcrt haplotypes, in the Amazon Basin.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Junhui Duan; Jianbing Mu; Mahamadou A. Thera; Deirdre A. Joy; Sergei L. Kosakovsky Pond; David Diemert; Carole A. Long; Hong Zhou; Kazutoyo Miura; Amed Ouattara; Amagana Dolo; Ogobara K. Doumbo; Xin-Zhuan Su; Louis H. Miller
Immunization with the highly polymorphic Plasmodium falciparum apical membrane antigen 1 (PfAMA1) induces protection in animals but primarily against parasites that express the same or similar alleles. One strategy to overcome the obstacle of polymorphism is to combine PfAMA1 proteins representing major haplotypes into one vaccine. To determine the minimum number of haplotypes that would confer broad protection, we sequenced the coding region of PfAMA1 from 97 clones from around the world and 61 isolates from Mali, identifying 150 haplotypes for domains 1 to 3 that included previous sequences. A clustering algorithm grouped the 150 haplotypes into six populations that were independent of geographic location. Each of the six populations contained haplotypes predominantly of that population (predominant haplotypes) and haplotypes that were a mixture of haplotypes represented in other populations (admixed haplotypes). To determine the biological relevance of the populations identified through the clustering algorithm, antibodies induced against one predominant haplotype of population 1 (3D7) and one admixed haplotype of population 5 (FVO) were tested for their ability to block parasite invasion of erythrocytes. Parasites expressing PfAMA1s belonging to population 1 were efficiently inhibited by 3D7-specific antibodies, whereas parasites expressing PfAMA1s belonging to other populations were not. For FVO-specific antibodies, we observed growth inhibition against itself as well as isolates belonging to populations 3 and 6. Our data suggests that the inclusion of PfAMA1 sequences from each of the six populations may result in a vaccine that induces protective immunity against a broad range of malaria parasites.
Parasites & Vectors | 2013
Lilia González-Cerón; Jianbing Mu; Frida Santillán; Deirdre A. Joy; Marco A. Sandoval; Gerardo Camas; Xin-Zhuan Su; Elena V Choy; Rene Torreblanca
BackgroundIn southern Mexico, malaria transmission is low, seasonal, and persistent. Because many patients are affected by two or more malaria episodes caused by Plasmodium vivax, we carried out a study to determine the timing, frequency, and genetic identity of recurrent malaria episodes in the region between 1998 and 2008.MethodsSymptomatic patients with more than one P. vivax infection were followed up, and blood samples were collected from primary and recurrent infections. DNA extracted from infected blood samples was analyzed for restriction fragment length polymorphism (RFLP) in genes encoding csp and msp3α, as well as size variation in seven microsatellites.ResultsOne hundred and forty six parasite samples were collected from 70 patients; of these, 65 patients had one recurrent infection, four had two, and one had three recurrent infections. The majority of recurrent infections occurred within one year of the primary infection, some of which were genetically homologous to the primary infection. As the genetic diversity in the background population was high, the probability of homologous re-infection was low and the homologous recurrences likely reflected relapses. These homologous recurrent infections generally had short (< 6 months) or long (6–12 months) intervals between the primary (PI) and recurrent (RI) infections; whereas infections containing heterologous genotypes had relatively longer intervals. The epidemiological data indicate that heterologous recurrences could be either relapse or re-infections.ConclusionsGenetic and temporal analysis of P. vivax recurrence patterns in southern Mexico indicated that relapses play an important role in initiating malaria transmission each season. The manifestation of these infections during the active transmission season allowed the propagation of diverse hypnozoite genotypes. Both short- and long-interval relapses have contributed to parasite persistence and must be considered as targets of treatment for malaria elimination programs in the region to be successful.
Nature | 2002
Jianbing Mu; Junhui Duan; Kateryna D. Makova; Deirdre A. Joy; Chuong Q. Huynh; Oralee H. Branch; Wen-Hsiung Li; Xin-Zhuan Su
This corrects the article DOI: nature00836