Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane M. Carlton is active.

Publication


Featured researches published by Jane M. Carlton.


Nature | 2002

Genome sequence of the human malaria parasite Plasmodium falciparum

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Nature | 2002

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii

Jane M. Carlton; Samuel V. Angiuoli; Bernard B. Suh; Taco W. A. Kooij; Mihaela Pertea; Joana C. Silva; Maria D. Ermolaeva; Jonathan E. Allen; Jeremy D. Selengut; Hean L. Koo; Jeremy Peterson; Mihai Pop; Daniel S. Kosack; Martin Shumway; Shelby Bidwell; Shamira Shallom; Susan Van Aken; Steven Riedmuller; Tamara Feldblyum; Jennifer Cho; John Quackenbush; Martha Sedegah; Azadeh Shoaibi; Leda M. Cummings; Laurence Florens; John R. Yates; J. Dale Raine; Robert E. Sinden; Michael Harris; Deirdre Cunningham

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.


Nature | 2008

Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant

The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Lancet Infectious Diseases | 2009

Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite

Ivo Mueller; Mary R. Galinski; J. Kevin Baird; Jane M. Carlton; Dhanpat Kumar Kochar; Pedro L. Alonso; Hernando A. del Portillo

Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasites biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.


Nature | 2004

Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment

Mary Ann Moran; Alison Buchan; José M. González; John F. Heidelberg; William B. Whitman; Ronald P. Kiene; James R. Henriksen; Gary M. King; Robert Belas; Clay Fuqua; Lauren M. Brinkac; Matthew S. Lewis; Shivani Johri; Bruce Weaver; Grace Pai; Jonathan A. Eisen; Elisha Rahe; Wade M. Sheldon; Wenying Ye; Todd R. Miller; Jane M. Carlton; David A. Rasko; Ian T. Paulsen; Qinghu Ren; Sean C. Daugherty; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Ramana Madupu; William C. Nelson

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise ∼10–20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.


The Journal of Infectious Diseases | 2007

Relapses of Plasmodium vivax Infection Usually Result from Activation of Heterologous Hypnozoites

Mallika Imwong; Georges Snounou; Sasithon Pukrittayakamee; Naowarat Tanomsing; Jung Ryong Kim; Amitab Nandy; Jean-Paul Guthmann; François Nosten; Jane M. Carlton; Sornchai Looareesuwan; Shalini Nair; Daniel Sudimack; Nicholas P. J. Day; Timothy J. C. Anderson; Nicholas J. White

BACKGROUND Relapses originating from hypnozoites are characteristic of Plasmodium vivax infections. Thus, reappearance of parasitemia after treatment can result from relapse, recrudescence, or reinfection. It has been assumed that parasites causing relapse would be a subset of the parasites that caused the primary infection. METHODS Paired samples were collected before initiation of antimalarial treatment and at recurrence of parasitemia from 149 patients with vivax malaria in Thailand (n=36), where reinfection could be excluded, and during field studies in Myanmar (n=75) and India (n=38). RESULTS Combined genetic data from 2 genotyping approaches showed that novel P. vivax populations were present in the majority of patients with recurrent infection (107 [72%] of 149 patients overall [78% of patients in Thailand, 75% of patients in Myanmar {Burma}, and 63% of patients in India]). In 61% of the Thai and Burmese patients and in 55% of the Indian patients, the recurrent infections contained none of the parasite genotypes that caused the acute infection. CONCLUSIONS The P. vivax populations emerging from hypnozoites commonly differ from the populations that caused the acute episode. Activation of heterologous hypnozoite populations is the most common cause of first relapse in patients with vivax malaria.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites

Zbynek Bozdech; Sachel Mok; Guangan Hu; Mallika Imwong; Anchalee Jaidee; Bruce Russell; Hagai Ginsburg; François Nosten; Nicholas P. J. Day; Nicholas J. White; Jane M. Carlton; Peter Rainer Preiser

Plasmodium vivax causes over 100 million clinical infections each year. Primarily because of the lack of a suitable culture system, our understanding of the biology of this parasite lags significantly behind that of the more deadly species P. falciparum. Here, we present the complete transcriptional profile throughout the 48-h intraerythrocytic cycle of three distinct P. vivax isolates. This approach identifies strain specific patterns of expression for subsets of genes predicted to encode proteins associated with virulence and host pathogen interactions. Comparison to P. falciparum revealed significant differences in the expression of genes involved in crucial cellular functions that underpin the biological differences between the two parasite species. These data provide insights into the biology of P. vivax and constitute an important resource for the development of therapeutic approaches.


Nature Genetics | 2012

The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum

Daniel E. Neafsey; Kevin Galinsky; Rays H. Y. Jiang; Lauren Young; Sean Sykes; Sakina Saif; Sharvari Gujja; Jonathan M. Goldberg; Qiandong Zeng; Sinéad B. Chapman; A. P. Dash; Anupkumar R. Anvikar; Patrick L. Sutton; Bruce W. Birren; Ananias A. Escalante; John W. Barnwell; Jane M. Carlton

We sequenced and annotated the genomes of four P. vivax strains collected from disparate geographic locations, tripling the number of genome sequences available for this understudied parasite and providing the first genome-wide perspective of global variability in this species. We observe approximately twice as much SNP diversity among these isolates as we do among a comparable collection of isolates of P. falciparum, a malaria-causing parasite that results in higher mortality. This indicates a distinct history of global colonization and/or a more stable demographic history for P. vivax relative to P. falciparum, which is thought to have undergone a recent population bottleneck. The SNP diversity, as well as additional microsatellite and gene family variability, suggests a capacity for greater functional variation in the global population of P. vivax. These findings warrant a deeper survey of variation in P. vivax to equip disease interventions targeting the distinctive biology of this neglected but major pathogen.


Nucleic Acids Research | 2009

GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis

Cristina Aurrecoechea; John Brestelli; Brian P. Brunk; Jane M. Carlton; Jennifer Dommer; Steve Fischer; Bindu Gajria; Xin Gao; Alan R. Gingle; Gregory R. Grant; Omar S. Harb; Mark Heiges; Frank Innamorato; John Iodice; Jessica C. Kissinger; Eileen Kraemer; Wei Li; John A. Miller; Hilary G. Morrison; Vishal Nayak; Cary Pennington; Deborah F. Pinney; David S. Roos; Chris Ross; Christian J. Stoeckert; Steven A. Sullivan; Charles Treatman; Haiming Wang

GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data.


Malaria Journal | 2012

The complexities of malaria disease manifestations with a focus on asymptomatic malaria

Dolie D Laishram; Patrick L. Sutton; Nutan Nanda; Vijay Lakshmi Sharma; Ranbir Chander Sobti; Jane M. Carlton; Hema Joshi

Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.

Collaboration


Dive into the Jane M. Carlton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Barnwell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelby Bidwell

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge