Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deirdre Mikkelsen is active.

Publication


Featured researches published by Deirdre Mikkelsen.


Journal of Applied Microbiology | 2009

Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.

Deirdre Mikkelsen; Bernadine M. Flanagan; Gary A. Dykes; Michael J. Gidley

Aims:  To determine the effect of carbon sources on cellulose produced by Gluconacetobacter xylinus strain ATCC 53524, and to characterize the purity and structural features of the cellulose produced.


Food Chemistry | 2012

Binding of polyphenols to plant cell wall analogues - Part 2: Phenolic acids

A. Padayachee; G. Netzel; M. Netzel; Li Day; Dimitrios Zabaras; Deirdre Mikkelsen; Michael J. Gidley

Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30s-1h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid>chlorogenic acid>ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria.


Food & Function | 2013

Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion

A. Padayachee; G. Netzel; M. Netzel; Li Day; Deirdre Mikkelsen; Michael J. Gidley

Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only ∼20% of total anthocyanins to ∼30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial non-specific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.


Journal of Agricultural and Food Chemistry | 2011

In Vitro Fermentation of Bacterial Cellulose Composites as Model Dietary Fibers

Deirdre Mikkelsen; Michael J. Gidley; Barbara A. Williams

Plant cell walls within the human diet are compositionally heterogeneous, so defining the basis of nutritive properties is difficult. Using a pig fecal inoculum, in vitro fermentations of soluble forms of arabinoxylan, mixed-linkage glucan, and xyloglucan were compared with the same polymers incorporated into bacterial cellulose composites. Fermentation rates were highest and similar for the soluble polysaccharides. Cellulose composites incorporating those polysaccharides fermented more slowly and at similar rates to wheat bran. Bacterial cellulose and cotton fermented most slowly. Cellulose composite fermentation resulted in a different short-chain fatty acid profile, compared with soluble polysaccharides, with more butyrate and less propionate. The results suggest that physical form is more relevant than the chemistry of plant cell wall polysaccharides in determining both rate and end-products of fermentation using fecal bacteria. This work also establishes bacterial cellulose composites as a useful model system for the fermentation of complex cell wall dietary fiber.


Biomacromolecules | 2015

Interactions of Arabinoxylan and (1,3)(1,4)-β-Glucan with Cellulose Networks

Deirdre Mikkelsen; Bernadine M. Flanagan; Sarah M. Wilson; Antony Bacic; Michael J. Gidley

To identify interactions of relevance to the structure and properties of the primary cell walls of cereals and grasses, we used arabinoxylan and (1,3)(1,4)-β-glucan, major polymers in cereal/grass primary cell walls, to construct composites with cellulose produced by Gluconacetobacter xylinus. Both polymers associated prolifically with cellulose without becoming rigid or altering the nature or extent of cellulose crystallinity. Mechanical properties were modestly affected compared with xyloglucan or pectin (characteristic components of nongrass primary cell walls) composites with cellulose. In situ depletion of arabinoxylan arabinose side chains within preformed cellulose composites resulted in phase separation, with only limited enhancement of xylan-cellulose interactions. These results suggest that arabinoxylan and (1 → 3)(1 → 4)-β-d-glucan are not functional homologues for either xyloglucan or pectin in the way they interact with cellulose networks. Association of cell-wall polymers with cellulose driven by entropic amelioration of high energy cellulose/water interfaces should be considered as a third type of interaction within cellulose-based cell walls, in addition to molecular binding (enthalpic driving force) exhibited by, for example, xyloglucans or mannans, and interpenetrating networks based on, for example, pectins.


Methods of Molecular Biology | 2011

Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation

Deirdre Mikkelsen; Michael J. Gidley

Gluconacetobacter xylinus synthesises cellulose in an analogous fashion to plants. Through fermentation of Ga. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterised. The method for producing cellulose-based composites involves reviving and then culturing Ga. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.


Environmental Microbiology | 2008

Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials

Deirdre Mikkelsen; Gabriel J. Milinovich; P. C. Burrell; S. C. Huynh; Lyndall M. Pettett; L. L. Blackall; Darren J. Trott; P. S. Bird

Porphyromonas species are frequently isolated from the oral cavity and are associated with periodontal disease in both animals and humans. Black, pigmented Porphyromonas spp. isolated from the gingival margins of selected wild and captive Australian marsupials with varying degrees of periodontal disease (brushtail possums, koalas and macropods) were compared phylogenetically to Porphyromonas strains from non-marsupials (bear, wolf, coyote, cats and dogs) and Porphyromonas gingivalis strains from humans using 16S rRNA gene sequence analysis. The results of the phylogenetic analysis identified three distinct groups of strains. A monophyletic P. gingivalis group (Group 1) contained only strains isolated from humans and a Porphyromonas gulae group (Group 2) was divided into three distinct subclades, each containing both marsupial and non-marsupial strains. Group 3, which contained only marsupial strains, including all six strains isolated from captive koalas, was genetically distinct from P. gulae and may constitute a new Porphyromonas species.


Carbohydrate Polymers | 2016

Multi-scale model for the hierarchical architecture of native cellulose hydrogels

Marta Martínez-Sanz; Deirdre Mikkelsen; Bernadine M. Flanagan; Michael J. Gidley; Elliot P. Gilbert

The structure of protiated and deuterated cellulose hydrogels has been investigated using a multi-technique approach combining small-angle scattering with diffraction, spectroscopy and microscopy. A model for the multi-scale structure of native cellulose hydrogels is proposed which highlights the essential role of water at different structural levels characterised by: (i) the existence of cellulose microfibrils containing an impermeable crystalline core surrounded by a partially hydrated paracrystalline shell, (ii) the creation of a strong network of cellulose microfibrils held together by hydrogen bonding to form cellulose ribbons and (iii) the differential behaviour of tightly bound water held within the ribbons compared to bulk solvent. Deuterium labelling provides an effective platform on which to further investigate the role of different plant cell wall polysaccharides in cellulose composite formation through the production of selectively deuterated cellulose composite hydrogels.


Nutrition | 2015

Soluble arabinoxylan alters digesta flow and protein digestion of red meat-containing diets in pigs

D. Zhang; Barbara A. Williams; Deirdre Mikkelsen; X. Li; Helen L. Keates; A. Lisle; Helen M. Collins; Geoffrey B. Fincher; Anthony R. Bird; David L. Topping; Michael J. Gidley; W. L. Bryden

OBJECTIVES The aim of this study was to investigate how a moderate increase in dietary meat content combined (or not) with soluble fibre would influence protein digestion as well as digesta characteristics and flow. METHODS Four groups of pigs were fed Western-style diets (high-protein/high-fat) containing two types of barbecued red meat, one with and one without a wheat arabinoxylan-rich fraction. After 4 wk, digesta samples were collected from small and large intestinal sites and analyzed for protein, amino acids, dry matter, and acid-insoluble ash. Tissue samples were also collected from each site. RESULTS Arabinoxylan consumption led to somewhat lower apparent protein digestibility within the small and large intestines as well as shorter mean retention times. This suggests that the lowered protein digestibility is due, at least partly, to shorter access time to digestive proteases and absorptive surfaces. Additionally, digesta mass was higher in pigs fed arabinoxylan while dry matter (%) was lower, indicating an increased digesta water-holding capacity due to the presence of a soluble dietary fiber. CONCLUSION Data showed that solubilized wheat arabinoxylan provides potential health benefits through decreased protein digestibility, increased digesta mass, and reduced mean retention time, even for diets with a moderately higher protein content. These factors are associated with efficiency of digestion and satiety, both of which have implications for prevention of obesity and other health disorders.


Systematic and Applied Microbiology | 2009

Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH.

Deirdre Mikkelsen; Ulrike Kappler; Alastair G. McEwan; Lindsay I. Sly

The archaeal community present in a sample of Mixed Thermophilic Culture-B (MTC-B) from a laboratory-scale thermophilic bioleaching reactor was investigated by temperature gradient gel electrophoresis (TGGE) and fluorescence in situ hybridisation (FISH). Both techniques were specifically adapted for use on native state bioleaching samples, with a view to establishing convenient means for monitoring culture composition. Using the TGGE protocol developed, the relative species composition of the thermophilic bioleaching sample was analysed, and included four phylotypes belonging to the Sulfolobales, which were related to Stygiolobus azoricus, Metallosphaera sp. J1, Acidianus infernus and Sulfurisphaera ohwakuensis. However, the St. azoricus-like phylotype was difficult to resolve and some micro-heterogeneity was observed within this phylotype. Specific FISH probes were designed to qualitatively assess the presence of the phylotypes in MTC-B. The sample was dominated by Sf. ohwakuensis-like Archaea. In addition, the St. azoricus-like, Metallosphaera species-like and Acidianus species-like cells appeared in similar low abundance in the community. Most strikingly, FISH identified Sulfolobus shibatae-like cells present in low numbers in the sample even though these were not detected by PCR-dependent TGGE. These results highlight the importance of using more than one molecular technique when investigating the archaeal diversity of complex bioleaching reactor samples.

Collaboration


Dive into the Deirdre Mikkelsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Netzel

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

M. Netzel

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

A. Padayachee

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Li Day

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Lucas Grant

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Lau

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge