Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li Day is active.

Publication


Featured researches published by Li Day.


Soft Matter | 2011

Impact of gastric structuring on the lipolysis of emulsified lipids

Matt Golding; Tim J. Wooster; Li Day; Mi Xu; Leif Lundin; Jennifer B. Keogh; Peter M. Clifton

Understanding and manipulating how emulsion structure impacts on fat digestion is an important step towards understanding the role of fat in our diet. This article reports on the nature of emulsion structuring within the digestive tract and how it affects the dynamics of fat digestion. Emulsions were designed a priori to have specific structuring behaviours (stable, coalesced, partially coalesced and fully broken) under gastrointestinal conditions, through careful emulsifier selection and control of solid fat composition. The impact these structures had on lipolysis was then assessed in vitro using a digestion model and in vivo by measuring the postprandial change in blood triglyceride concentration as a marker of fat absorption. The major factor controlling the rate of fat digestion in vitro was the droplet surface area available for lipase adsorption, which was governed by emulsion instability. The rate of fat absorption in vivo was only affected by large changes in the droplet surface area, and only if these changes remained until the droplets reached the small intestine. This was most evident in emulsions that had undergone extensive partial coalescence under gastric conditions. Partial coalescence resulted in a dramatic reduction in triglyceride absorption, in part because the network of fat crystals provided the agglomerates with an internal scaffold to resist re-dispersion as they passed through the pylorus. The differences in fat absorption profile achieved by controlling emulsion structural stability during digestion provide a basis for examining the physiological effects of food structure on lipid metabolism, which will be the subject of a follow-up clinical paper.


The American Journal of Clinical Nutrition | 2009

The droplet size of intraduodenal fat emulsions influences antropyloroduodenal motility, hormone release, and appetite in healthy males

Radhika V. Seimon; Timothy Wooster; B. Otto; Matt Golding; Li Day; Tanya J. Little; Michael Horowitz; Peter M. Clifton; Christine Feinle-Bisset

BACKGROUND The presence of fat in the small intestine modulates gastrointestinal motility, stimulates plasma cholecystokinin and peptide YY release, and suppresses appetite and energy intake. These effects are dependent on the lipolysis of fat. OBJECTIVE Our aim was to evaluate the hypothesis that increasing the droplet size of a fat emulsion would attenuate these effects. DESIGN Ten healthy, lean males were studied on 4 separate occasions in single-blind randomized order. Antropyloroduodenal pressures, plasma triglycerides, cholecystokinin, peptide YY, and appetite were measured during 120-min intraduodenal infusions of fat emulsions comprising 3 different droplet sizes: 1) 0.26 microm (LE-0.26), 2) 30 microm (LE-30), and 3) 170 microm (LE-170) in addition to saline (control). Energy intake at a buffet lunch was quantified immediately after the infusions. RESULTS Increasing the droplet size of the lipid emulsion was associated with diminished suppression of antral (r = 0.75, P < 0.01) and duodenal (r = 0.80, P < 0.01) pressure waves and with stimulation of isolated (r = -0.72, P < 0.01) and basal (r = -0.83, P < 0.01) pyloric pressures. Increasing the droplet size was also associated with attenuation of the stimulation of plasma triglycerides (r = -0.73, P < 0.001), cholecystokinin (r = -0.73, P < 0.001), and peptide YY (r = -0.83, P < 0.001) as well as with reductions in the suppression of hunger (r = 0.75, P < 0.01) and energy intake (r = 0.66, P < 0.001). CONCLUSIONS The acute effects of intraduodenal fat emulsions on gastrointestinal function and appetite are dependent on fat droplet size. These observations have implications for the design of functional foods to maximize effects on those gut functions that are involved in the suppression of appetite.


Food Chemistry | 2012

Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota)

Davinder Pal Singh; Joel Beloy; Jennifer K. McInerney; Li Day

Carrots (Daucus carota L.) were used to investigate the effects and interactions of cultivar and mineral supply on the nutritional quality (antioxidant potential, vitamin C, carotenoids and phenolic acids) of the resulting storage roots. The supplement of boron (B) and or calcium (Ca) in the feeding solutions, during plant growth, influenced the accumulation of other minerals, such as P, K, Mg, S and Na, in the storage roots (p<0.05). When no additional B or Ca was supplied (e.g. -B or -Ca treatment), we observed 33-50% increase in the accumulated levels of α- and β-carotenes, and 45-70% increase of vitamin C. Carrots grown with no supplement of B in the nutrient solutions (e.g. -B treatment and -ve control) had significantly higher (p<0.001) levels of total phenolic acids compared to the carrots with the supplement of B (e.g. -Ca treatment and +ve control). A strong positive correlation was observed between the total phenolic contents and ORAC values (r=0.932) in all the cultivars. The results suggest that both cultivar and mineral supply were major determinants of nutritional quality of the carrots. The nutritional value of carrot crops (with an acceptable physical quality) can be enhanced by manipulating mineral nutrient applications.


Food Chemistry | 2012

Binding of polyphenols to plant cell wall analogues - Part 2: Phenolic acids

A. Padayachee; G. Netzel; M. Netzel; Li Day; Dimitrios Zabaras; Deirdre Mikkelsen; Michael J. Gidley

Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30s-1h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid>chlorogenic acid>ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria.


Food & Function | 2013

Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion

A. Padayachee; G. Netzel; M. Netzel; Li Day; Deirdre Mikkelsen; Michael J. Gidley

Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only ∼20% of total anthocyanins to ∼30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial non-specific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.


Langmuir | 2012

Conformational Changes of α-Lactalbumin Adsorbed at Oil–Water Interfaces: Interplay between Protein Structure and Emulsion Stability

Jiali Zhai; Søren V. Hoffmann; Li Day; Tzong-Hsien Lee; Mary Ann Augustin; Marie-Isabel Aguilar; Tim J. Wooster

The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.


Journal of Nutrition | 2011

Slowly and Rapidly Digested Fat Emulsions Are Equally Satiating but Their Triglycerides Are Differentially Absorbed and Metabolized in Humans

Jennifer B. Keogh; Tim J. Wooster; Matt Golding; Li Day; B. Otto; Peter M. Clifton

Little is known about the effect of dietary fat emulsion microstructure on plasma TG concentrations, satiety hormones, and food intake. The aim of this study was to structure dietary fat to slow digestion and flatten postprandial plasma TG concentrations but not increase food intake. Emulsions were stabilized by egg lecithin (control), sodium sterol lactylate, or sodium caseinate/monoglyceride (CasMag) with either liquid oil or a liquid oil/solid fat mixture. In a randomized, double-blind, crossover design, 4 emulsions containing 30 g of fat in a 350-mL preload were consumed by 10 men and 10 women (BMI = 25.1 ± 2.8 kg/m(2); age = 58.8 ± 4.8 y). Pre- and postprandial plasma TG, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) concentrations and food intake were measured. In a second experiment in a subset of the participants (n = 8, 4 men and 4 women), (13)C-labeled mixed TG was incorporated into 2 different emulsions and breath (13)C was measured over 6 h. In the first experiment, the postprandial rise in plasma TG concentrations following the CasMag-stabilized emulsion containing 30% solid fat was lower than all other emulsions at 90 and 120 min (P < 0.05). Plasma CCK (P < 0.0001), GLP-1 (P < 0.01), and PYY (P < 0.001) concentrations were also reduced following this emulsion compared with control. Food intake at a test meal, eaten 3 h after the preload, did not differ among the emulsions. In the second experiment, when measured by the (13)C breath test, 25% of the TG in the CasMag emulsion was absorbed and metabolized compared with control. In conclusion, fat can be structured to decrease its effect on plasma TG concentrations without increasing food intake.


Critical Reviews in Food Science and Nutrition | 2017

Complexity and health functionality of plant cell wall fibers from fruits and vegetables

A. Padayachee; Li Day; Kate Howell; Michael J. Gidley

ABSTRACT The prevalence of lifestyle-related diseases is increasing in developing countries with the causes for death starting to follow the same pattern in the developed world. Lifestyle factors including inadequate dietary intake of fruits and vegetables and over consumption of nutrient-poor processed foods, are considered to be major causal risk factors associated with increased susceptibility to developing certain diseases (Alldrick, 1998; Kiani, 2007). Recent epidemiological evidence confirms a strong association between dietary fiber and reduced all-cause mortality risk, as well as a risk reduction for a number of non-communicable diseases (Chuang et al., 2012). The relationship between dietary fiber and mortality has been described as “convincing observations that call for mechanistic investigations” (Landberg, 2012). In particular, the health protective roles played by dietary fibers of different origin are not well understood. Whilst Hippocrates was the earliest known physician to study the health benefits of fiber derived from grains (Burkitt, 1987), the functionality of fruit and vegetable fiber, especially in association with other compounds such as polyphenols and carotenoids, is an area of more recent interest. Hence the objective of this review is to assess the complexity and health-related functional role of plant cell wall (PCW) fibers from fruits and vegetables with a particular emphasis on interactions between cell walls and phytonutrients.


Carbohydrate Polymers | 2013

Effect of NaCl on the thermal behaviour of wheat starch in excess and limited water

Li Day; Claire Fayet; Stephen Homer

The effect of NaCl on the thermal behaviour of wheat starch was investigated with particular focus on starch at low moisture contents (25-45 wt%). Increasing the level of NaCl reduced the starch peak viscosity (in 90% water) as measured by RVA and shifted all of the thermal peaks (up to 120°C) to higher temperatures as observed by DSC. Above a moisture content of 45%, the temperature difference of the first thermal transition of starch in the presence of 2% NaCl and in the absence of NaCl was found to be constant. In the absence of NaCl, the peak temperature of gelatinisation (Tp) increased by 12°C (from 62 to 74°C) as the water content was reduced from 35% to 25%. In the presence of 2% NaCl, the variation in Tp due to changes in water content was significantly reduced. At NaCl concentrations greater than 2% (w/w total), the Tp of the starch remained constant irrespective of water content. Evidence of this effect was observed in situ using confocal microscopy. In the presence of 2% NaCl, images taken at elevated temperatures show little difference in the extent of starch swelling at 25% compared to 45% water content. However, in the absence of NaCl, significantly more swelling was observed at 45% than at 25% water content. With increasing NaCl concentration, the interaction of starch and NaCl became dominate. Thus the on-set of the thermal transitions of starch granules is primarily controlled by the amount of NaCl present, and secondarily by the water content which becomes dominant when the NaCl concentration is low.


Carbohydrate Polymers | 2014

Determination of the thermo-mechanical properties in starch and starch/gluten systems at low moisture content – A comparison of DSC and TMA

Stephen Homer; Michael Kelly; Li Day

The impact of heating rate on the glass transition (Tg) and melting transitions observed by differential scanning calorimetry (DSC) on starch and a starch/gluten blend (80:20 ratio) at low moisture content was examined. The results were compared to those determined by thermo-mechanical analysis (TMA). Comparison with dynamic mechanical thermal analysis (DMTA) and phase transition analysis (PTA) is also discussed. Higher heating rates increased the determined Tg as well as the melting peak temperatures in both starch and the starch/gluten blend. A heating rate of 5°C/min gave the most precise value of Tg while still being clearly observed above the baseline. Tg values determined from the first and second DSC scans were found to differ significantly and retrogradation of starch biopolymers may be responsible. Tg values of starch determined by TMA showed good agreement with DSC results where the Tg was below 80°C. However, moisture loss led to inaccurate Tg determination for TMA analyses at temperatures above 80°C.

Collaboration


Dive into the Li Day's collaboration.

Top Co-Authors

Avatar

M. Netzel

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

G. Netzel

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mi Xu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Leif Lundin

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Ann Augustin

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

A. Padayachee

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Sofia K. Øiseth

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Clifton

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Tim J. Wooster

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge