Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deirdre Shoemaker is active.

Publication


Featured researches published by Deirdre Shoemaker.


Physics Letters A | 1996

IMPROVED SENSITIVITY IN A GRAVITATIONAL WAVE INTERFEROMETER AND IMPLICATIONS FOR LIGO

Alex Abramovici; W. E. Althouse; Jordan Camp; D. Durance; J. A. Giaime; A. Gillespie; S. Kawamura; A. Kuhnert; T. Lyons; F. J. Raab; R. L. Savage; Deirdre Shoemaker; L. Sievers; Robert E. Spero; R. E. Vogt; R. Weiss; S. E. Whitcomb; M. E. Zucker

Sensitivity enhancements in the laser interferometer gravitational wave observatory (LIGO) projects 40 m interferometer have been achieved through two major instrumental improvements. Improved vibration isolation has reduced the noise due to ground motion. New test masses with less mechanical dissipation were installed to lower the thermal noise associated with mirror vibrations. The minimum interferometer noise (square root of the spectral density of apparent differential displacement) reached 3 x 10^(-19) m/Hz^(1/2) near 450 Hz.


The Astrophysical Journal | 2007

Gravitational Recoil from Spinning Binary Black Hole Mergers

Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna; Richard A. Matzner

The inspiraling and merger of binary black holes will likely involve black holes with not only unequal masses but also arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal-mass, nonspinning binaries. We present results from simulations of equal-mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude a aligned and antialigned with the orbital angular momentum, with a the dimensionless spin parameter of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475a km s-1. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection of the final hole produced by the collision from the core of a dwarf galaxy.


Physical Review D | 2003

Introduction to isolated horizons in numerical relativity

Olaf Dreyer; Deirdre Shoemaker; Badri Krishnan

We present a coordinate-independent method for extracting mass (M�) and angular momentum (J�) of a black hole in numerical simulations. This method, based on the isolated horizon framework, is applicable both at late times when the black hole has reached equilibrium, and at early times when the black holes are widely separated. Assuming that the spatial hypersurfaces used in a given numerical simulation are such that apparent horizons exist and have been located on these ˜ �


Classical and Quantum Gravity | 2009

Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

B. E. Aylott; John G. Baker; William D. Boggs; Michael Boyle; P. R. Brady; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; A. Buonanno; L. Cadonati; Jordan Camp; Manuela Campanelli; Joan M. Centrella; S. Chatterji; N. Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua A. Faber; S. Fairhurst; B. Farr; Sebastian Fischetti; G. M. Guidi; L. M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; S. Husa; Vicky Kalogera

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.


Classical and Quantum Gravity | 2007

Unequal mass binary black hole plunges and gravitational recoil

Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna

We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q ≡ M1/M2 = {1, 0.85, 0.78, 0.55, 0.32}, or equivalently, with reduced mass parameters η ≡ M1M2/(M1 + M2)2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook–Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l = 2, 3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25–82 km s−1. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.


Physical Review D | 2007

Binary black holes : Spin dynamics and gravitational recoil

Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna; Richard A. Matzner

We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is {proportional_to}sin{theta} and on the orbital plane {proportional_to}cos{theta}, with {theta} the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.


The Astrophysical Journal | 2010

Relativistic Mergers of Supermassive Black Holes and Their Electromagnetic Signatures

Tanja Bode; Roland Haas; Tamara Bogdanovic; Pablo Laguna; Deirdre Shoemaker

Coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures from coalescence events of supermassive black holes (SMBHs) are the next observational grand challenge. Such detections will provide the means to study cosmological evolution and accretion processes associated with these gargantuan compact objects. More generally, the observations will enable testing general relativity in the strong, nonlinear regime and will provide independent cosmological measurements to high precision. Understanding the conditions under which coincidences of EM and GW signatures arise during SMBH mergers is therefore of paramount importance. As an essential step toward this goal, we present results from the first fully general relativistic, hydrodynamical study of the late inspiral and merger of equal-mass, spinning SMBH binaries in a gas cloud. We find that variable EM signatures correlated with GWs can arise in merging systems as a consequence of shocks and accretion combined with the effect of relativistic beaming. The most striking EM variability is observed for systems where spins are aligned with the orbital axis and where orbiting black holes form a stable set of density wakes, but all systems exhibit some characteristic signatures that can be utilized in searches for EM counterparts. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, calculated luminosities imply that they may be identified by EM searches to z 1, while lower mass systems and binaries immersed in low density ambient gas can only be detected in the local universe.


Physical Review D | 2007

Matched filtering of numerical relativity templates of spinning binary black holes

B. Vaishnav; Ian Hinder; Frank Herrmann; Deirdre Shoemaker

Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes, and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary but nonprecessing spin and inclination for the axial case considered here.


Classical and Quantum Gravity | 2012

The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries

P. Ajith; Michael Boyle; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; L. Cadonati; Manuela Campanelli; Tony Chu; Zachariah B. Etienne; S. Fairhurst; Mark Hannam; James Healy; Ian Hinder; S. Husa; Lawrence E. Kidder; Badri Krishnan; Pablo Laguna; Yuk Tung Liu; L. T. London; Carlos O. Lousto; Geoffrey Lovelace; Ilana MacDonald; Pedro Marronetti; S. R. P. Mohapatra; Philipp Mösta; Doreen Müller; Bruno C. Mundim; Hiroyuki Nakano; F. Ohme; Vasileios Paschalidis

The numerical injection analysis (NINJA) project is a collaborative effort between members of the numerical-relativity and gravitational wave data-analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms and to foster closer collaboration between the numerical-relativity and data-analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian—numerical-relativity hybrid waveforms, large numbers of injections and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical-relativity groups have contributed 56 hybrid waveforms consisting of a numerical portion modeling the late inspiral, merger and ringdown stitched to a post-Newtonian portion modeling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the (l, m) = (2, 2) mode. Based on these studies, we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations.

Collaboration


Dive into the Deirdre Shoemaker's collaboration.

Top Co-Authors

Avatar

Pablo Laguna

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James Healy

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Matzner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Tanja Bode

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

L. Cadonati

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

B. Vaishnav

University of Texas at Brownsville

View shared research outputs
Top Co-Authors

Avatar

Mark A. Scheel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge