Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Laguna is active.

Publication


Featured researches published by Pablo Laguna.


Classical and Quantum Gravity | 2015

Testing general relativity with present and future astrophysical observations

Emanuele Berti; Enrico Barausse; Vitor Cardoso; Leonardo Gualtieri; Paolo Pani; Ulrich Sperhake; Leo C. Stein; Norbert Wex; Kent Yagi; Tessa Baker; C. P. Burgess; Flávio S. Coelho; Daniela D. Doneva; Antonio De Felice; Pedro G. Ferreira; P. C. C. Freire; James Healy; Carlos Herdeiro; Michael Horbatsch; Burkhard Kleihaus; Antoine Klein; Kostas D. Kokkotas; Jutta Kunz; Pablo Laguna; Ryan N. Lang; Tjonnie G. F. Li; T. B. Littenberg; Andrew Matas; Saeed Mirshekari; Hirotada Okawa

One century after its formulation, Einsteins general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einsteins theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.


The Astrophysical Journal | 1993

Gasdynamics of relativistically expanding gamma-ray burst sources - Kinematics, energetics, magnetic fields, and efficiency

P. Meszaros; Pablo Laguna; Martin J. Rees

We calculate both analytically and numerically the evolution of highly relativistic fireballs through the stages of free expansion and coasting, and determine the dependence of the thermodynamic and radiation variables in the comoving and laboratory flames. The dynamics and the comoving geometry change at the (lab) expansion factors r/r(0) greater than eta and r/r(0) greater than eta-squared, respectively, where eta = E(0)/M(0)c-squared is the initial Lorentz factor. In the lab, the gas appears concentrated in a thin shell of width r(0) until r/r(0) of less than about eta-squared, and increases linearly after that. Magnetic fields may have been important in the original impulsive event. We discuss their effect on the fireball dynamics and also consider their effects on the radiation emitted when the fireball runs into an external medium and is decelerated. The inverse synchro-Compton mechanism can then yield high radiative efficiency in the reverse shock (and through turbulent instabilities and mixing also in the forward blast wave), producing a burst of nonthermal radiation mainly in the MeV to GeV range. The energy and duration depend on eta, the magnetic field strength, and the external density, and can match the range of properties observed in cosmic gamma-ray bursts.


Classical and Quantum Gravity | 2012

The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics

Frank Löffler; Joshua A. Faber; Eloisa Bentivegna; Tanja Bode; Peter Diener; Roland Haas; Ian Hinder; Bruno C. Mundim; Christian D. Ott; Gabrielle Allen; Manuela Campanelli; Pablo Laguna

We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus framework for high-performance computing and the Carpet adaptive mesh refinement driver. It implements spacetime evolution via the BSSN evolution system and general relativistic hydrodynamics in a finite-volume discretization. The toolkit is under continuous development and contains many new code components that have been publicly released for the first time and are described in this paper. We discuss the motivation behind the release of the toolkit, the philosophy underlying its development, and the goals of the project. A summary of the implemented numerical techniques is included, as are results of numerical test covering a variety of sample astrophysical problems.


The Astrophysical Journal | 2007

Gravitational Recoil from Spinning Binary Black Hole Mergers

Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna; Richard A. Matzner

The inspiraling and merger of binary black holes will likely involve black holes with not only unequal masses but also arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal-mass, nonspinning binaries. We present results from simulations of equal-mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude a aligned and antialigned with the orbital angular momentum, with a the dimensionless spin parameter of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475a km s-1. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection of the final hole produced by the collision from the core of a dwarf galaxy.


Classical and Quantum Gravity | 2009

Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

B. E. Aylott; John G. Baker; William D. Boggs; Michael Boyle; P. R. Brady; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; A. Buonanno; L. Cadonati; Jordan Camp; Manuela Campanelli; Joan M. Centrella; S. Chatterji; N. Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua A. Faber; S. Fairhurst; B. Farr; Sebastian Fischetti; G. M. Guidi; L. M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; S. Husa; Vicky Kalogera

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.


The Astrophysical Journal | 1993

Tidal disruptions by supermassive black holes - Hydrodynamic evolution of stars on a Schwarzschild background

Pablo Laguna; Warner A. Miller; Wojciech H. Zurek; Melvyn B. Davies

We present a three-dimensional numerical study of tidal disruption of a main-sequence star (M * =1 M ○. ) by a supermassive black hole (M h =106 M ○. ). The simulations include general relativistic erects which are important in this regime. We analyze stars in a marginally bound orbit around the black hole with pericentric separation of a few Schwarzschild radii. We show that during a close passage, as a result of relativistic effects analogous to the perihelion shift, the trajectories of the debris of the star fan out into a crescent-like shape centered on the black hole


The Astrophysical Journal | 2004

TIDAL DISRUPTION OF A STAR BY A BLACK HOLE: OBSERVATIONAL SIGNATURE

Tamara Bogdanovic; Michael Eracleous; Suvrath Mahadevan; Steinn Sigurdsson; Pablo Laguna

We have modeled the time-variable profiles of the Hα emission line from the nonaxisymmetric disk and debris tail created in the tidal disruption of a solar-type star by a 106 M☉ black hole. Two tidal disruption events were simulated using a three-dimensional relativistic smoothed particle hydrodynamics code to describe the early evolution of the debris during the first 50-90 days. We have calculated the physical conditions and radiative processes in the debris using the photoionization code CLOUDY. We model the emission-line profiles in the period immediately after the accretion rate onto the black hole became significant. We find that the line profiles at these very early stages of the evolution of the postdisruption debris do not resemble the double-peaked profiles expected from a rotating disk, since the debris has not yet settled into such a stable structure. As a result of the uneven distribution of the debris and the existence of a tidal tail (the stream of returning debris), the line profiles depend sensitively on the orientation of the tail relative to the line of sight. Moreover, the predicted line profiles vary on fairly short timescales (of the order of hours to days). Given the accretion rate onto the black hole, we also model the Hα light curve from the debris and the evolution of the Hα line profiles in time.


The Astrophysical Journal | 2004

Gravitational Waves and X-Ray Signals from Stellar Disruption by a Massive Black Hole

Shiho Kobayashi; Pablo Laguna; E. Sterl Phinney; P. Meszaros

Gravitational waves and X-ray flares are expected from tidal disruption of stars by a massive black hole. Using a relativistic smoothed particle hydrodynamics code, we investigate the fate of main-sequence and helium stars in plunge orbits passing near Schwarzschild or Kerr black holes of mass ~105-106 M☉. We show that quadrupole gravitational waves emitted during the tidal disruption process are described reasonably well by a point-particle approximation even in the strong-encounter case. An additional hydrodynamic calculation based on the Godunov method indicates that shocks develop for sufficiently high tidal compressions. The shock heating results in an X-ray flare, which for solar-type stars disrupted by ~106 M☉ black holes is in the keV range associated with the gravitational wave signal. The hardness and duration of the X-ray flare may serve as a diagnostic of the mass of the central black hole.


Classical and Quantum Gravity | 2007

Unequal mass binary black hole plunges and gravitational recoil

Frank Herrmann; Ian Hinder; Deirdre Shoemaker; Pablo Laguna

We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q ≡ M1/M2 = {1, 0.85, 0.78, 0.55, 0.32}, or equivalently, with reduced mass parameters η ≡ M1M2/(M1 + M2)2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook–Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l = 2, 3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25–82 km s−1. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.

Collaboration


Dive into the Pablo Laguna's collaboration.

Top Co-Authors

Avatar

Deirdre Shoemaker

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tanja Bode

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Matzner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

James Healy

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wojciech H. Zurek

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Manuela Campanelli

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Sperhake

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge