Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deli Zhang is active.

Publication


Featured researches published by Deli Zhang.


Circulation | 2014

Activation of Histone Deacetylase-6 Induces Contractile Dysfunction Through Derailment of α-Tubulin Proteostasis in Experimental and Human Atrial Fibrillation

Deli Zhang; Xiao-Yan Qi; Roelien A. M. Meijering; Femke Hoogstra-Berends; Artavazd Tadevosyan; Gunseli Cubukcuoglu Deniz; Serkan Durdu; Achmet Ruchan Akar; Ody C. M. Sibon; Stanley Nattel; Robert H. Henning; Bianca J.J.M. Brundel

Background— Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models. Methods and Results— Tachypacing of HL-1 atrial cardiomyocytes and Drosophila pupae hearts significantly impaired contractile function (amplitude of Ca2+ transients and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in &agr;-tubulin deacetylation, depolymerization, and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant-negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears &agr;-tubulin deacetylase activity. Furthermore, in vivo treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electric remodeling (action potential duration shortening, L-type Ca2+ current reduction, AF promotion) and cellular Ca2+-handling/contractile dysfunction (loss of Ca2+ transient amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total &agr;-tubulin. Conclusions— AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of &agr;-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. In vivo inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF.


Journal of Molecular and Cellular Cardiology | 2011

Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation

Deli Zhang; Lei Ke; Katarina Mackovicova; Johannes J.L. van der Want; Ody C. M. Sibon; Robert M. Tanguay; Geneviève Morrow; Robert H. Henning; Harm H. Kampinga; Bianca J.J.M. Brundel

The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.


Trends in Cardiovascular Medicine | 2012

Heat Shock Protein-Inducing Compounds as Therapeutics to Restore Proteostasis in Atrial Fibrillation

Femke Hoogstra-Berends; Roelien A. M. Meijering; Deli Zhang; André Heeres; Lizette Loen; Jean-Paul Seerden; Irma Kuipers; Harm H. Kampinga; Robert H. Henning; Bianca J.J.M. Brundel

Atrial fibrillation (AF) is the most common clinical tachyarrhythmia associated with significant morbidity and mortality and is expected to affect approximately 30 million North Americans and Europeans by 2050. AF is a persistent disease, caused by progressive, often age-related, derailment of proteostasis resulting in structural remodeling of the atrial cardiomyocytes. It has been widely acknowledged that the progressive nature of the disease hampers the effective functional conversion to sinus rhythm in patients and explains the limited effect of current drug therapies. Therefore, research is directed at preventing new-onset AF by limiting the development of substrates underlying AF promotion. Upstream therapy refers to the use of drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) and recurrence of the arrhythmia following (spontaneous) conversion and to prevent the progression of AF (secondary prevention). Recently, we observed that heat shock protein (HSP)-inducing drugs, such as geranylgeranylacetone, prevent derailment of proteostasis and remodeling of cardiomyocytes and thereby attenuate the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Also, correlative data from human studies were consistent with a protective role of HSPs in preventing the progression from paroxysmal AF to permanent AF and in the recurrence of AF. In this review, we discuss novel HSP-inducing compounds as emerging therapeutics for the primary and secondary prevention of AF.


Frontiers in Physiology | 2012

Loss of Proteostatic Control as a Substrate for Atrial Fibrillation: A Novel Target for Upstream Therapy by Heat Shock Proteins

Roelien A. M. Meijering; Deli Zhang; Femke Hoogstra-Berends; Robert H. Henning; Bianca J.J.M. Brundel

Atrial fibrillation (AF) is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in aging and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its efficacy is still limited. Current research is directed at preventing first-onset AF by limiting the development of substrates underlying AF progression and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) or recurrence of the arrhythmia following (spontaneous) conversion (secondary prevention). Heat shock proteins (HSPs) are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially) unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile, and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently progression and recurrence of AF.


Cardiovascular Research | 2016

Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation

Deli Zhang; Xu Hu; Robert H. Henning; Bianca J.J.M. Brundel

Cardiomyocytes are long-lived post-mitotic cells with limited regenerative capacity. Proper cardiomyocyte function depends critically on the maintenance of a healthy homeostasis of protein expression, folding, assembly, trafficking, function, and degradation, together commonly referred to as proteostasis. Impairment of proteostasis has a prominent role in the pathophysiology of ageing-related neurodegenerative diseases including Huntingtons, Parkinsons, and Alzheimers disease. Emerging evidence reveals also a role for impaired proteostasis in the pathophysiology of common human cardiac diseases such as cardiac hypertrophy, dilated and ischaemic cardiomyopathies, and atrial fibrillation (AF). Histone deacetylases (HDACs) have recently been recognized as key modulators which control cardiac proteostasis by deacetylating various proteins. By deacetylating chromatin proteins, including histones, HDACs modulate epigenetic regulation of pathological gene expression. Also, HDACs exert a broad range of functions outside the nucleus by deacetylating structural and contractile proteins. The cytosolic actions of HDACs result in changed protein function through post-translational modifications and/or modulation of their degradation. This review describes the mechanisms underlying the derailment of proteostasis in AF and subsequently focuses on the role of HDACs herein. In addition, the therapeutic potential of HDAC inhibition to maintain a healthy proteostasis resulting in a delay in AF onset and progression is discussed.


Journal of the American Heart Association | 2017

Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation

Marit Wiersma; Roelien A. M. Meijering; Xiao-Yan Qi; Deli Zhang; Tao Liu; Femke Hoogstra-Berends; Ody C. M. Sibon; Robert H. Henning; Stanley Nattel; Bianca J.J.M. Brundel

Background Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self‐perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. Methods and Results Tachypacing of HL‐1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B‐II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca2+ amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4‐phenyl butyrate, overexpression of the ER chaperone‐protein heat shock protein A5, or overexpression of a phosphorylation‐blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca2+‐transient loss in tachypaced HL‐1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial‐tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L‐type Ca2+‐current reduction), cellular Ca2+‐handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. Conclusions These results identify ER stress–associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER‐stress inhibitor 4‐phenyl butyrate.


Cell Stress & Chaperones | 2017

The protective role of small heat shock proteins in cardiac diseases: key role in atrial fibrillation

Xu Hu; Denise M. S. Van Marion; Marit Wiersma; Deli Zhang; Bianca J.J.M. Brundel

Atrial fibrillation (AF) is the most common tachyarrhythmia which is associated with increased morbidity and mortality. AF usually progresses from a self-terminating paroxysmal to persistent disease. It has been recognized that AF progression is driven by structural remodeling of cardiomyocytes, which results in electrical and contractile dysfunction of the atria. We recently showed that structural remodeling is rooted in derailment of proteostasis, i.e., homeostasis of protein production, function, and degradation. Since heat shock proteins (HSPs) play an important role in maintaining a healthy proteostasis, the role of HSPs was investigated in AF. It was found that especially small heat shock protein (HSPB) levels get exhausted in atrial tissue of patients with persistent AF and that genetic or pharmacological induction of HSPB protects against cardiomyocyte remodeling in experimental models for AF. In this review, we provide an overview of HSPBs as a potential therapeutic target for normalizing proteostasis and suppressing the substrates for AF progression in experimental and clinical AF and discuss HSP activators as a promising therapy to prevent AF onset and progression.


PLOS ONE | 2015

RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

Roelien A. M. Meijering; Marit Wiersma; Denise M. S. van Marion; Deli Zhang; Femke Hoogstra-Berends; Anne-Jan Dijkhuis; Martina Schmidt; Thomas Wieland; Harm H. Kampinga; Robert H. Henning; Bianca J.J.M. Brundel

Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1), which binds to conserved heat shock elements (HSE) in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP). Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli. Methods and Results Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A) promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress. Conclusion These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.


Journal of Molecular and Cellular Cardiology | 2018

Converse role of class I and class IIa HDACs in the progression of atrial fibrillation

Deli Zhang; Xu Hu; Jin Li; Femke Hoogstra-Berends; Qiang Zhuang; Miguel A. Esteban; Natasja M.S. de Groot; Robert H. Henning; Bianca J.J.M. Brundel

Atrial fibrillation (AF), the most common persistent clinical tachyarrhythmia, is associated with altered gene transcription which underlies cardiomyocyte dysfunction, AF susceptibility and progression. Recent research showed class I and class IIa histone deacetylases (HDACs) to regulate pathological and fetal gene expression, and thereby induce hypertrophy and cardiac contractile dysfunction. Whether class I and class IIa HDACs are involved in AF promotion is unknown. We aim to elucidate the role of class I and class IIa HDACs in tachypacing-induced contractile dysfunction in experimental model systems for AF and clinical AF. METHODS AND RESULTS: Class I and IIa HDACs were overexpressed in HL-1 cardiomyocytes followed by calcium transient (CaT) measurements. Overexpression of class I HDACs, HDAC1 or HDAC3, significantly reduced CaT amplitude in control normal-paced (1 Hz) cardiomyocytes, which was further reduced by tachypacing (5 Hz) in HDAC3 overexpressing cardiomyocytes. HDAC3 inhibition by shRNA or by the specific inhibitor, RGFP966, prevented contractile dysfunction in both tachypaced HL-1 cardiomyocytes and Drosophila prepupae. Conversely, overexpression of class IIa HDACs (HDAC4, HDAC5, HDAC7 or HDAC9) did not affect CaT in controls, with HDAC5 and HDAC7 overexpression even protecting against tachypacing-induced CaT loss. Notably, the protective effect of HDAC5 and HDAC7 was abolished in cardiomyocytes overexpressing a dominant negative HDAC5 or HDAC7 mutant, bearing a mutation in the binding domain for myosin enhancer factor 2 (MEF2). Furthermore, tachypacing induced phosphorylation of HDAC5 and promoted its translocation from the nucleus to cytoplasm, leading to up-regulation of MEF2-related fetal gene expression (β-MHC, BNP). In accord, boosting nuclear localization of HDAC5 by MC1568 or Go6983 attenuated CaT loss in tachypaced HL-1 cardiomyocytes and preserved contractile function in Drosophila prepupae. Findings were expanded to clinical AF. Here, patients with AF showed a significant increase in expression levels and activity of HDAC3, phosphorylated HDAC5 and fetal genes (β-MHC, BNP) in atrial tissue compared to controls in sinus rhythm. CONCLUSION: Class I and class IIa HDACs display converse roles in AF progression. Whereas overexpression of Class I HDAC3 induces cardiomyocyte dysfunction, class IIa HDAC5 overexpression reveals protective properties. Accordingly, HDAC3 inhibitors and HDAC5 nuclear boosters show protection from tachypacing-induced changes and therefore may represent interesting therapeutic options in clinical AF.


Current Pharmaceutical Design | 2012

Hydroximic Acid Derivatives: Pleiotropic Hsp Co-Inducers Restoring Homeostasis and Robustness

Tim Crul; Noémi Tóth; Stefano Piotto; Peter Literati-Nagy; Kalman Tory; Pierre Haldimann; Bernadett Kalmar; Linda Greensmith; Zsolt Török; Gábor Balogh; Imre Gombos; Federica Campana; Simona Concilio; Ferenc Gallyas; Gábor Nagy; Zoltán Berente; Burcin Gungor; Mária Péter; Attila Glatz; Ákos Hunya; Zsuzsanna Literati-Nagy; László Vígh; Femke Hoogstra-Berends; André Heeres; Irma Kuipers; Lizette Loen; Jean Paul Seerden; Deli Zhang; Roelien A. M. Meijering; Robert H. Henning

Collaboration


Dive into the Deli Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Henning

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Femke Hoogstra-Berends

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Roelien A. M. Meijering

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Marit Wiersma

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Harm H. Kampinga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Xu Hu

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Stanley Nattel

Montreal Heart Institute

View shared research outputs
Top Co-Authors

Avatar

Xiao-Yan Qi

Montreal Heart Institute

View shared research outputs
Top Co-Authors

Avatar

Ody C. M. Sibon

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge