Harm H. Kampinga
University Medical Center Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harm H. Kampinga.
Nature Reviews Molecular Cell Biology | 2010
Harm H. Kampinga; Elizabeth A. Craig
Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.
Cell Stress & Chaperones | 2009
Harm H. Kampinga; Jurre Hageman; Michel J. Vos; Hiroshi Kubota; Robert M. Tanguay; Elspeth A. Bruford; Michael E. Cheetham; Bin Chen; Lawrence E. Hightower
The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), and HSPB (small HSP) as well as for the human chaperonin families HSPD/E (HSP60/HSP10) and CCT (TRiC). The nomenclature is based largely on the more consistent nomenclature assigned by the HUGO Gene Nomenclature Committee and used in the National Center of Biotechnology Information Entrez Gene database for the heat shock genes. In addition to this nomenclature, we provide a list of the human Entrez Gene IDs and the corresponding Entrez Gene IDs for the mouse orthologs.
PLOS ONE | 2008
Isabelle M.A. Lombaert; Jeanette F. Brunsting; Pieter K. Wierenga; Hette Faber; Monique Stokman; Tineke Kok; Willy H. Visser; Harm H. Kampinga; Gerald de Haan; Robert P. Coppes
Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.
Experimental Hematology | 1999
Gabriele Multhoff; Lee Mizzen; Christopher C Winchester; Caroline M. Milner; Susanne Wenk; Guenther Eissner; Harm H. Kampinga; Barbara Laumbacher; Judith P. Johnson
We previously demonstrated that lysis of tumor cells that express Hsp70, the highly stress-inducible member of the HSP70 family, on their plasma membrane is mediated by natural killer (NK) cells. Here, we studied the effects of different proteins of the HSP70 family in combination with interleukin 2 (IL-2) on the proliferation and cytotoxic activity of human NK cells in vitro. Proliferation of NK cells was significantly enhanced by human recombinant Hsp70 (rHsp70) and to a lesser extent by rHsp70homC, the recombinant C-terminal peptide-binding domain derived from Hsp70hom, but not by the constitutive Hsc70 or DnaK, the Escherichia coli analogue of human Hsp70. Even rHsp70 protein alone moderately enhances proliferation and cytolytic activity of NK cells, thus indicating that the stimulatory effect is not strictly dependent on IL-2. NK cells stimulated with rHsp70 protein also exhibit an increased secretion of interferon gamma (IFN-gamma). The phenotypic characterization of NK cells with specificity for Hsp70-expressing tumor cells revealed a CD16dim/CD56bright and increased CD57 and CD94 expression. The cytolytic activity of NK cells also was significantly reduced when a CD94-specific antibody or rHsp70 was added directly before the cytotoxicity assay, whereas other antibodies directed against CD57 and major histocompatibility complex class I molecules or Hsp70 proteins, including Hsc70 and DnaK, did not affect the NK-mediated killing. However, long-term incubation of NK cells with rHsp70 protein enhances not only the proliferative but also the cytolytic response against Hsp70-expressing tumor cells. Our results indicate that the C-terminal domain of Hsp70 protein affects not only the proliferative but also the cytolytic activity of a phenotypically distinct NK cell population with specificity for Hsp70-expressing tumor cells. 1999 International Society for Experimental Hematology.
Molecular and Cellular Biology | 1999
Ellen A. A. Nollen; Jeanette F. Brunsting; Han Roelofsen; Lee A. Weber; Harm H. Kampinga
ABSTRACT Heat shock protein 70 (Hsp70) is thought to play a critical role in the thermotolerance of mammalian cells, presumably due to its chaperone activity. We examined the chaperone activity and cellular heat resistance of a clonal cell line in which overexpression of Hsp70 was transiently induced by means of the tetracycline-regulated gene expression system. This single-cell-line approach circumvents problems associated with clonal variation and indirect effects resulting from constitutive overexpression of Hsp70. The in vivo chaperone function of Hsp70 was quantitatively investigated by using firefly luciferase as a reporter protein. Chaperone activity was found to strictly correlate to the level of Hsp70 expression. In addition, we observed an Hsp70 concentration dependent increase in the cellular heat resistance. In order to study the contribution of the Hsp70 chaperone activity, heat resistance of cells that expressed tetracycline-regulated Hsp70 was compared to thermotolerant cells expressing the same level of Hsp70 plus all of the other heat shock proteins. Overexpression of Hsp70 alone was sufficient to induce a similar recovery of cytoplasmic luciferase activity, as does expression of all Hsps in thermotolerant cells. However, when the luciferase reporter protein was directed to the nucleus, expression of Hsp70 alone was not sufficient to yield the level of recovery observed in thermotolerant cells. In addition, cells expressing the same level of Hsp70 found in heat-induced thermotolerant cells containing additional Hsps showed increased resistance to thermal killing but were more sensitive than thermotolerant cells. These results suggest that the inducible form of Hsp70 contributes to the stress-tolerant state by increasing the chaperone activity in the cytoplasm. However, its expression alone is apparently insufficient for protection of other subcellular compartments to yield clonal heat resistance to the level observed in thermotolerant cells.
PLOS Biology | 2006
M. A. Rujano; Floris Bosveld; Florian A Salomons; Freark Dijk; Maria A.W.H. van Waarde; Johannes J.L. van der Want; Rob A.I. de Vos; Ewout Brunt; Ody C. M. Sibon; Harm H. Kampinga
Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny.
International Journal of Hyperthermia | 2006
Harm H. Kampinga
Hyperthermia results in protein unfolding that, if not properly chaperoned by Heat Shock Proteins (HSP), can lead to irreversible and toxic protein aggregates. Elevating HSP prior to heating makes cells thermotolerant. Hyperthermia also can enhance the sensitivity of cells to radiation and drugs. This sensitization to drugs or radiation is not directly related to altered HSP expression. However, altering HSP expression before heat and radiation or drug treatment will affect the extent of thermal sensitization because the HSP will attenuate the heat-induced protein damage that is responsible for radiation- or drug-sensitization. For thermal radiosensitization, nuclear protein damage is considered to be responsible for hyperthermic effects on DNA repair, in particular base excision repair. Hyperthermic drug sensitization can be seen for a number of anti-cancer drugs, especially of alkylating agents. Synergy between heat and drugs may arise from multiple events such as heat damage to ABC transporters (drug accumulation), intra-cellular drug detoxification pathways and repair of drug-induced DNA adducts. This may be why cells with acquired drug resistance (often multi-factorial) can be made responsive to drugs again by combining the drug treatment with heat.
Molecular Cell | 2010
Jurre Hageman; M. A. Rujano; Maria A.W.H. van Waarde; Vaishali Kakkar; Ron P. H. Dirks; Natalia Govorukhina; Henderika M.J. Oosterveld-Hut; Nicolette H. Lubsen; Harm H. Kampinga
Misfolding and aggregation are associated with cytotoxicity in several protein folding diseases. A large network of molecular chaperones ensures protein quality control. Here, we show that within the Hsp70, Hsp110, and Hsp40 (DNAJ) chaperone families, members of a subclass of the DNAJB family (particularly DNAJB6b and DNAJB8) are superior suppressors of aggregation and toxicity of disease-associated polyglutamine proteins. The antiaggregation activity is largely independent of the N-terminal Hsp70-interacting J-domain. Rather, a C-terminal serine-rich (SSF-SST) region and the C-terminal tail are essential. The SSF-SST region is involved in substrate binding, formation of polydisperse oligomeric complexes, and interaction with histone deacetylases (HDAC4, HDAC6, SIRT2). Inhibiting HDAC4 reduced DNAJB8 function. DNAJB8 is (de)acetylated at two conserved C-terminal lysines that are not involved in substrate binding, but do play a role in suppressing protein aggregation. Combined, our data provide a functional link between HDACs and DNAJs in suppressing cytotoxic protein aggregation.
The International Journal of Biochemistry & Cell Biology | 2012
Carmen Garrido; C. Paul; R. Seigneuric; Harm H. Kampinga
Small heat shock proteins are a rather heterogeneous family of ATP-independent chaperones, some of which have been proven to block protein aggregation and help the cells to survive stressful conditions. Although much less studied than high molecular weight HSPs like HSP70/HSPA or HSP90/HSPC, their implication in physio-pathological processes and human diseases is now well evidenced, as it will be discussed in the different reviews of this special issue. In this mini-review we will just present a general introduction about the small heat shock proteins family. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Clinical Cancer Research | 2006
Isabelle M.A. Lombaert; Pieter K. Wierenga; Tineke Kok; Harm H. Kampinga; Gerald deHaan; Robert P. Coppes
Purpose: One of the major reasons for failure of radiotherapeutic cancer treatment is the limitation in dose that can be applied to the tumor because of coirradiation of the normal healthy tissue. Late radiation-induced damage reduces the quality of life of the patient and may even be life threatening. Replacement of the radiation-sterilized stem cells with unirradiated autologous stem cells may restore the tissue function. Here, we assessed the potential of granulocyte colony-stimulating factor (G-CSF)–mobilized bone marrow–derived cells (BMC) to regenerate and functionally restore irradiated salivary glands used as a model for normal tissue damage. Experimental Design: Male-eGFP+ bone marrow chimeric female C57BL/6 mice were treated with G-CSF, 10 to 60 days after local salivary gland irradiation. Four months after irradiation, salivary gland morphology and flow rate were assessed. Results: G-CSF treatment induced homing of large number of labeled BMCs to the submandibular glands after irradiation. These animals showed significant increased gland weight, number of acinar cells, and salivary flow rates. Donor cells expressed surface markers specific for hematopoietic or endothelial/mesenchymal cells. However, salivary gland acinar cells neither express the G-CSF receptor nor contained the GFP/Y chromosome donor cell label. Conclusions: The results show that BMCs home to damaged salivary glands after mobilization and induce repair processes, which improve function and morphology. This process does not involve transdifferentiation of BMCs to salivary gland cells. Mobilization of BMCs could become a promising modality to ameliorate radiation-induced complications after radiotherapy.