Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delia Bethell is active.

Publication


Featured researches published by Delia Bethell.


Nature Genetics | 2013

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto; Jacob Almagro-Garcia; Magnus Manske; Bronwyn MacInnis; Susana Campino; Kirk A. Rockett; Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Jennifer M. Anderson; Socheat Duong; Chea Nguon; Char Meng Chuor; David L. Saunders; Youry Se; Chantap Lon; Mark M. Fukuda; Lucas Amenga-Etego; Abraham Hodgson; Victor Asoala; Mallika Imwong; Shannon Takala-Harrison; François Nosten; Xin-Zhuan Su; Pascal Ringwald; Frédéric Ariey; Christiane Dolecek; Tran Tinh Hien; Maciej F. Boni

We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.


Nature Genetics | 2015

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto; Roberto Amato; Elizabeth A. Ashley; Bronwyn MacInnis; Jacob Almagro-Garcia; Chanaki Amaratunga; Pharath Lim; Daniel Mead; Samuel O. Oyola; Mehul Dhorda; Mallika Imwong; Charles J. Woodrow; Magnus Manske; Jim Stalker; Eleanor Drury; Susana Campino; Lucas Amenga-Etego; Thuy-Nhien Nguyen Thanh; Hien Tinh Tran; Pascal Ringwald; Delia Bethell; François Nosten; Aung Pyae Phyo; Sasithon Pukrittayakamee; Kesinee Chotivanich; Char Meng Chuor; Chea Nguon; Seila Suon; Sokunthea Sreng; Paul N. Newton

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


The Journal of Infectious Diseases | 2015

Independent Emergence of Artemisinin Resistance Mutations Among Plasmodium falciparum in Southeast Asia

Shannon Takala-Harrison; Christopher G. Jacob; Cesar Arze; Michael P. Cummings; Joana C. Silva; Arjen M. Dondorp; Mark M. Fukuda; Tran Tinh Hien; Mayfong Mayxay; Harald Noedl; François Nosten; Myat Phone Kyaw; Nguyen Thanh Thuy Nhien; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Frédéric Ariey; Odile Mercereau-Puijalon; Didier Ménard; Paul N. Newton; Maniphone Khanthavong; Bouasy Hongvanthong; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Wasif Ali Khan; Aung Pyae Phyo

BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia

Shannon Takala-Harrison; Taane G. Clark; Christopher G. Jacob; Michael P. Cummings; Olivo Miotto; Arjen M. Dondorp; Mark M. Fukuda; François Nosten; Harald Noedl; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Duong Socheat; Frédéric Ariey; Aung Pyae Phyo; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Kasia Stepniewska; Jennifer A. Flegg; Cesar Arze; Gustavo C. Cerqueira; Joana C. Silva; Stacy M. Ricklefs; Stephen F. Porcella; Robert M. Stephens; Matthew Adams

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.


The Journal of Infectious Diseases | 2014

Independent emergence of Plasmodium falciparum artemisinin resistance mutations in Southeast Asia

Shannon Takala-Harrison; Christopher G. Jacob; Cesar Arze; Michael P. Cummings; Joana C. Silva; Arjen M. Dondorp; Mark M. Fukuda; Tran Tinh Hien; Mayfong Mayxay; Harald Noedl; François Nosten; Myat Phone Kyaw; Nguyen Thanh Thuy Nhien; Mallika Imwong; Delia Bethell; Youry Se; Chanthap Lon; Stuart D. Tyner; David L. Saunders; Frédéric Ariey; Odile Mercereau-Puijalon; Didier Ménard; Paul N. Newton; Maniphone Khanthavong; Bouasy Hongvanthong; Peter Starzengruber; Hans-Peter Fuehrer; Paul Swoboda; Wasif Ali Khan; Aung Pyae Phyo

BACKGROUND The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.


The Journal of Infectious Diseases | 1998

Pathophysiologic and Prognostic Role of Cytokines in Dengue Hemorrhagic Fever

Delia Bethell; Karin Flobbe; Cao Xuan; Thanh Phuong; Nicholas P. J. Day; Pham Tung Phuong; Wim A. Buurman; Mary Jane Cardosa; Nicholas J. White; Dominic P. Kwiatkowski

Dengue shock syndrome is a severe complication of dengue hemorrhagic fever (DHF), characterized by a massive increase in vascular permeability. Plasma cytokine concentrations were prospectively studied in 443 Vietnamese children with DHF, of whom 6 died. Shock was present in 188 children on admission to hospital, and in 71 children it developed later. Contrary to expectations, certain inflammatory markers (interleukin-6 and soluble intercellular adhesion molecule-1) were lower in the group with shock, and this may reflect the general loss of protein from the circulation due to capillary leakage. Only soluble tumor necrosis factor receptor (TNFR) levels showed a consistent positive relationship with disease severity. In patients with suspected DHF without shock, admission levels of sTNFR-75 in excess of 55 pg/mL predicted the subsequent development of shock, with a relative risk of 5.5 (95% confidence interval, 2.3-13.2). Large-scale release of soluble TNFR may be an early and specific marker of the endothelial changes that cause dengue shock syndrome.


The Journal of Infectious Diseases | 2001

Strong HLA Class I- Restricted T Cell Responses in Dengue Hemorrhagic Fever: A Double-Edged Sword?

Hsin Loke; Delia Bethell; Cao Xuan Thanh Phuong; Minh Dung; Joerg Schneider; Nicholas J. White; Nicholas P. J. Day; Jeremy Farrar; Adrian V. S. Hill

Dengue is an increasingly important cause of morbidity and mortality in the tropics, but vaccine development has been impeded by a poor understanding of disease pathogenesis and, in particular, of immunologic enhancement. In a large case-control study of Vietnamese patients with dengue hemorrhagic fever (DHF), variation at the HLA-A locus was significantly associated with susceptibility to DHF (P=.02), and specific HLA-A susceptibility and resistance alleles were identified. HLA-A-specific epitopes were predicted from binding motifs, and ELISPOT analyses of patients with DHF revealed high frequencies of circulating CD8 T lymphocytes that recognized both serotype-specific and -cross-reactive dengue virus epitopes. Thus, strong CD8 T cell responses are induced by natural dengue virus infection, and HLA class I genetic variation is a risk factor for DHF. These genetic and immunologic data support both protective and pathogenic roles for dengue virus-specific CD8 T cell responses in severe disease. The potentially pathogenic role of serotype-cross-reactive CD8 T cells poses yet another obstacle to successful dengue vaccine development.


The Lancet | 1996

Post-malaria neurological syndrome

Nguyen Thi Hoang Mai; Nicholas P. J. Day; Ly Van Chuong; Deborah Waller; Nguyen Hoan Phu; Delia Bethell; Tran Tinh Hien; Nicholas J. White

BACKGROUND Neurological signs and symptoms are common in malaria, but observations in Vietnam and Thailand have pointed to a discrete transient neurological syndrome after recovery from severe infections. METHODS A prospective study of the post-malaria neurological syndrome (PMNS) was conducted at two centres in Vietnam over four years. Criteria for inclusion were recent symptomatic malaria infection with parasites cleared from blood (and in cases of cerebral malaria full recovery of consciousness), and development of neurological or psychiatric symptoms within two months after the acute illness. Half of the patients with severe falciparum malaria had been taking part in a randomised trial of antimalarials. FINDINGS Of 18,124 patients with falciparum malaria treated (1176 of whom had severe infections) 19 adults and three children had subsequent PMNS; in one patient it followed uncomplicated malaria and in 21 it followed severe malaria. The overall incidence (95% confidence interval) of PMNS after falciparum malaria at the main study centre was 1.2 per 1000 (0.7 to 1.8 per 1000) and relative risk (95% CI) for developing PMNS after severe versus uncomplicated falciparum malaria was 299 (40 to 2223). 13 patients had an acute confusional state or psychosis, six had one or more generalised convulsions, two had generalised convulsions followed by a long period of acute confusion, and one developed a fine tremor. At the time of PMNS diagnosis all patients were aparasitaemic. The syndrome was self-limiting, median duration 60 h (range 24-240). PMNS was associated with the use of oral mefloquine. In the randomised trial 4.4% (10/228) of patients with severe malaria who received mefloquine after parenteral treatment developed PMNS compared with 0.5% (1/210) of those who received quinine; relative risk 9.2 (95% CI 1.2 to 71.3, p = 0.012). INTERPRETATION Mefloquine is not the only risk factor for PMNS but it is a strong one. Where an effective alternative drug is available, mefloquine should not be used after treatment of severe malaria.


American Journal of Pathology | 2002

Axonal Injury in Cerebral Malaria

Isabelle M. Medana; Nicholas P. J. Day; Tran Tinh Hien; Nguyen Thi Hoang Mai; Delia Bethell; Nguyen Hoan Phu; Jeremy Farrar; Margaret M. Esiri; Nicholas J. White; Gareth D. H. Turner

Impairment of consciousness and other signs of cerebral dysfunction are common complications of severe Plasmodium falciparum malaria. Although the majority of patients make a complete recovery a significant minority, particularly children, have sequelae. The pathological process by which P. falciparum malaria induces severe but usually reversible neurological complications has not been elucidated. Impairment of transport within nerve fibers could induce neurological dysfunction and may have the potential either to resolve or to progress to irreversible damage. Beta-amyloid precursor protein (beta-APP) immunocytochemistry, quantified using digital image analysis, was used to detect defects in axonal transport in brain sections from 54 Vietnamese cases with P. falciparum malaria. The frequency and extent of beta-APP staining were more severe in patients with cerebral malaria than in those with no clinical cerebral involvement. Beta-APP staining was often associated with hemorrhages and areas of demyelination, suggesting that multiple processes may be involved in neuronal injury. The age of focal axonal damage, as determined by the extent of the associated microglial response, varied considerably within tissue sections from individual patients. These findings suggest that axons are vulnerable to a broad range of cerebral insults that occur during P. falciparum malaria infection. Disruption in axonal transport may represent a final common pathway leading to neurological dysfunction in cerebral malaria.


Infection and Immunity | 2005

Fatal Plasmodium falciparum Malaria Causes Specific Patterns of Splenic Architectural Disorganization

Britta C. Urban; Tran Tinh Hien; Nicholas P. J. Day; Nguyen Hoan Phu; Rachel Roberts; Emsri Pongponratn; Margret Jones; Nguyen Thi Hoang Mai; Delia Bethell; Gareth D. H. Turner; David J. P. Ferguson; Nicholas J. White; David J. Roberts

ABSTRACT The spleen is critical for host defense against pathogens, including Plasmodium falciparum. It has a dual role, not only removing aged or antigenically altered erythrocytes from the blood but also as the major lymphoid organ for blood-borne or systemic infections. The human malaria parasite P. falciparum replicates within erythrocytes during asexual blood stages and causes repeated infections that can be associated with severe disease. In spite of the crucial role of the spleen in the innate and acquired immune response to malaria, there is little information on the pathology of the spleen in human malaria. We performed a histological and quantitative immunohistochemical study of spleen sections from Vietnamese adults dying from severe falciparum malaria and compared the findings with the findings for spleen sections from control patients and patients dying from systemic bacterial sepsis. Here we report that the white pulp in the spleens of patients dying from malaria showed a marked architectural disorganization. We observed a marked dissolution of the marginal zones with relative loss of B cells. Furthermore, we found strong HLA-DR expression on sinusoidal lining cells but downregulation on cordal macrophages. P. falciparum infection results in alterations in splenic leukocytes, many of which are not seen in sepsis.

Collaboration


Dive into the Delia Bethell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Saunders

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald Noedl

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge