Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine C. Malherbe is active.

Publication


Featured researches published by Delphine C. Malherbe.


Journal of Virology | 2011

Sequential Immunization with a Subtype B HIV-1 Envelope Quasispecies Partially Mimics the In Vivo Development of Neutralizing Antibodies

Delphine C. Malherbe; Nicole A. Doria-Rose; Lynda Misher; Travis Beckett; Wendy Blay Puryear; Jason T. Schuman; Zane Kraft; Jean P. O'Malley; Motomi Mori; Indresh K. Srivastava; Susan W. Barnett; Leonidas Stamatatos; Nancy L. Haigwood

ABSTRACT A major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is the design of Envelope (Env)-based immunogens effective at eliciting heterologous or broad neutralizing antibodies (NAbs). We hypothesized that programming the B-cell response could be achieved by sequentially exposing the host to a collection of env variants representing the viral quasispecies members isolated from an individual that developed broad NAbs over time. This ordered vaccine approach (sequential) was compared to exposure to a cocktail of env clones (mixture) and to a single env variant (clonal). The three strategies induced comparable levels of the autologous and heterologous neutralization of tier 1 pseudoviruses. Sequential and mixture exposure to quasispecies led to epitope targeting similar to that observed in the simian-human immunodeficiency virus (SHIV)-infected animal from which the env variants were cloned, while clonal and sequential exposure led to greater antibody maturation than the mixture. Therefore, the sequential vaccine approach best replicated the features of the NAb response observed in that animal. This study is the first to explore the use of a collection of HIV-1 env quasispecies variants as immunogens and to present evidence that it is possible to educate the B-cell response by sequential exposure to native HIV-1 quasispecies env variants derived from an individual with a broadened NAb response.


Journal of Virology | 2014

Emergence of Broadly Neutralizing Antibodies and Viral Coevolution in Two Subjects during the Early Stages of Infection with Human Immunodeficiency Virus Type 1

D. Noah Sather; Sara Carbonetti; Delphine C. Malherbe; Franco Pissani; Andrew B. Stuart; Ann J. Hessell; Mathew D. Gray; Iliyana Mikell; Spyros A. Kalams; Nancy L. Haigwood; Leonidas Stamatatos

ABSTRACT Delineating the key early events that lead to the development of broadly neutralizing anti-HIV-1 antibodies during natural infection may help guide the development of immunogens and vaccine regimens to prevent HIV-1 infection. In this study, we monitored two HIV-1-positive subjects, VC20013 and VC10014, over the course of infection from before they developed broadly neutralizing antibody (bNAb) activity until several years after neutralizing breadth was detected in plasma. Both subjects developed bNAb activity after approximately 1 year postinfection, which ultimately mapped to the membrane-proximal external region (MPER) in VC20013 and an epitope that overlaps the CD4 receptor binding site in VC10014. In subject VC20013, we were able to identify anti-MPER activity in the earliest plasma sample that exhibited no bNAb activity, indicating that this epitope specificity was acquired very early on, but that it was initially not able to mediate neutralization. Escape mutations within the bNAb epitopes did not arise in the circulating envelopes until bNAb activity was detectable in plasma, indicating that this early response was not sufficient to drive viral escape. As bNAb activity began to emerge in both subjects, we observed a simultaneous increase in autologous antienvelope antibody binding affinity, indicating that antibody maturation was occurring as breadth was developing. Our findings illustrate one potential mechanism by which bNAbs develop during natural infection in which an epitope target is acquired very early on during the course of infection but require time and maturation to develop into broadly neutralizing activity. IMPORTANCE One major goal of HIV-1 vaccine research is the development of a vaccine that can elicit broadly neutralizing antibodies (bNAbs). Although no such vaccine exists, bNAbs develop in approximately 20% of HIV-1-infected subjects, providing a prototype of the bNAbs that must be reelicited by vaccine. Thus, there is significant interest in understanding the mechanisms by which bNAbs develop during the course of infection. We studied the timing, epitope specificity, and evolution of the bNAb responses in two HIV-1-positive patients who developed bNAb activity within the first several years after infection. In one subject, antibodies to a broadly neutralizing epitope developed very early but were nonneutralizing. After several months, neutralizing activity developed, and the virus mutated to escape their activity. Our study highlights one mechanism for the development of bNAbs where early epitope acquisition followed by sufficient time for antibody maturation drives the epitope-specific antibody response toward broadly neutralizing activity.


Journal of Virology | 2013

Neutralizing Polyclonal IgG Present during Acute Infection Prevents Rapid Disease Onset in Simian-Human Immunodeficiency Virus SHIVSF162P3-Infected Infant Rhesus Macaques

Juan Pablo Jaworski; James J. Kobie; Zachary Brower; Delphine C. Malherbe; Gary Landucci; William F. Sutton; Biwei Guo; Jason S. Reed; Enrique J. León; Flora Engelmann; Bo Zheng; Al Legasse; Byung Park; Mary F. Dickerson; Anne D. Lewis; Lois M. A. Colgin; Michael K. Axthelm; Ilhem Messaoudi; Jonah B. Sacha; Dennis R. Burton; Donald N. Forthal; Ann J. Hessell; Nancy L. Haigwood

ABSTRACT Simian-human immunodeficiency virus (SHIV) models for human immunodeficiency virus (HIV) infection have been widely used in passive studies with HIV neutralizing antibodies (NAbs) to test for protection against infection. However, because SHIV-infected adult macaques often rapidly control plasma viremia and any resulting pathogenesis is minor, the model has been unsuitable for studying the impact of antibodies on pathogenesis in infected animals. We found that SHIVSF162P3 infection in 1-month-old rhesus macaques not only results in high persistent plasma viremia but also leads to very rapid disease progression within 12 to 16 weeks. In this model, passive transfer of high doses of neutralizing IgG (SHIVIG) prevents infection. Here, we show that at lower doses, SHIVIG reduces both plasma and peripheral blood mononuclear cell (PBMC)-associated viremia and mitigates pathogenesis in infected animals. Moreover, production of endogenous NAbs correlated with lower set-point viremia and 100% survival of infected animals. New SHIV models are needed to investigate whether passively transferred antibodies or antibodies elicited by vaccination that fall short of providing sterilizing immunity impact disease progression or influence immune responses. The 1-month-old rhesus macaque SHIV model of infection provides a new tool to investigate the effects of antibodies on viral replication and clearance, mechanisms of B cell maintenance, and the induction of adaptive immunity in disease progression.


PLOS ONE | 2012

Co-Immunization with Multimeric Scaffolds and DNA Rapidly Induces Potent Autologous HIV-1 Neutralizing Antibodies and CD8+ T Cells

Juan Pablo Jaworski; Shelly J. Krebs; Maria Trovato; Dina N. Kovarik; Zachary Brower; William F. Sutton; Garrett Waagmeester; Rossella Sartorius; Luciana D'Apice; Antonella Caivano; Nicole A. Doria-Rose; Delphine C. Malherbe; David C. Montefiori; Susan W. Barnett; Piergiuseppe De Berardinis; Nancy L. Haigwood

To obtain proof of concept for HIV vaccines, we generated recombinant multimeric particles displaying the HIV-1 Envelope (Env) third hypervariable region (V3) as an N-terminal fusion protein on the E2 subunit of the pyruvate dehydrogenase complex of Geobacillus stearothermophilus. The E2 scaffold self-assembles into a 60-mer core that is 24 nm in diameter, with a molecular weight of 1.5 MDa, similar to a virus like particle with up to 60 copies of a heterologous protein accessible on the surface. Env(V3)-E2 multimers were tested alone and in combination with Env(gp160) DNA in mice and rabbits. Following two or more co-immunizations with Env(V3)-E2 and Env gp160 DNA, all 18 rabbits developed potent autologous neutralizing antibodies specific for V3 in six weeks. These neutralizing antibodies were sustained for 16 weeks without boosting, and comparable responses were obtained when lipopolysaccharide, a contaminant from expression in E. coli, was removed. Co-immunizations of Env(V3)-E2 and DNA expressing gp160 elicited moderate CD8-specific responses and Env-specific antibodies in mice. Co-immunization with DNA and E2 was superior to individual or sequential vaccination with these components in eliciting both neutralizing antibodies in rabbits and CD8+ T cell responses in mice. Co-immunization with DNA and multimeric E2 scaffolds appears to offer a highly effective means of eliciting rapid, specific, and sustained immune responses that may be a useful approach for other vaccine targets.


Journal of Immunology | 2016

Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens

Ann J. Hessell; Delphine C. Malherbe; Franco Pissani; Sean P. McBurney; Shelly J. Krebs; Michelle M. Gomes; Shilpi Pandey; William F. Sutton; Benjamin J. Burwitz; Matthew D. Gray; Harlan Robins; Byung Park; Jonah B. Sacha; Celia C. LaBranche; Deborah H. Fuller; David C. Montefiori; Leonidas Stamatatos; D. Noah Sather; Nancy L. Haigwood

Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B–infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements.


Vaccine | 2014

Improvement of Antibody Responses by HIV Envelope DNA and Protein Co-Immunization

Franco Pissani; Delphine C. Malherbe; Jason T. Schuman; Harlan Robins; Byung Park; Shelly J. Krebs; Susan W. Barnett; Nancy L. Haigwood

BACKGROUND Developing HIV envelope (Env) vaccine components that elicit durable and protective antibody responses is an urgent priority, given the results from the RV144 trial. Optimization of both the immunogens and vaccination strategies will be needed to generate potent, durable antibodies. Due to the diversity of HIV, an effective Env-based vaccine will most likely require an extensive coverage of antigenic variants. A vaccine co-delivering Env immunogens as DNA and protein components could provide such coverage. Here, we examine a DNA and protein co-immunization strategy by characterizing the antibody responses and evaluating the relative contribution of each vaccine component. METHOD We co-immunized rabbits with representative subtype A or B HIV gp160 plasmid DNA plus Env gp140 trimeric glycoprotein and compared the responses to those obtained with either glycoprotein alone or glycoprotein in combination with empty vector. RESULTS DNA and glycoprotein co-immunization was superior to immunization with glycoprotein alone by enhancing antibody kinetics, magnitude, avidity, and neutralizing potency. Importantly, the empty DNA vector did not contribute to these responses. Humoral responses elicited by mismatched DNA and protein components were comparable or higher than the responses produced by the matched vaccines. CONCLUSION Our data show that co-delivering DNA and protein can augment antibodies to Env. The rate and magnitude of immune responses suggest that this approach has the potential to streamline vaccine regimens by inducing higher antibody responses using fewer vaccinations, an advantage for a successful HIV vaccine design.


Journal of Virology | 2014

Envelope Variants Circulating as Initial Neutralization Breadth Developed in Two HIV-Infected Subjects Stimulate Multiclade Neutralizing Antibodies in Rabbits

Delphine C. Malherbe; Franco Pissani; D. Noah Sather; Biwei Guo; Shilpi Pandey; William F. Sutton; Andrew B. Stuart; Harlan Robins; Byung Park; Shelly J. Krebs; Jason T. Schuman; Spyros A. Kalams; Ann J. Hessell; Nancy L. Haigwood

ABSTRACT Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.


Vaccine | 2012

Motif-optimized subtype A HIV envelope-based DNA vaccines rapidly elicit neutralizing antibodies when delivered sequentially

Franco Pissani; Delphine C. Malherbe; Harlan Robins; Victor R. DeFilippis; Byung Park; George Sellhorn; Leonidas Stamatatos; Julie Overbaugh; Nancy L. Haigwood

HIV-1 infection results in the development of a diverging quasispecies unique to each infected individual. Envelope (Env)-specific neutralizing antibodies (NAbs) typically develop over months to years after infection and initially are limited to the infecting virus. In some subjects, antibody responses develop that neutralize heterologous isolates (HNAbs), a phenomenon termed broadening of the NAb response. Studies of co-crystalized antibodies and proteins have facilitated the identification of some targets of broadly neutralizing monoclonal antibodies (NmAbs) capable of neutralizing many or most heterologous viruses; however, the ontogeny of these antibodies in vivo remains elusive. We hypothesize that Env protein escape variants stimulate broad NAb development in vivo and could generate such NAbs when used as immunogens. Here we test this hypothesis in rabbits using HIV Env vaccines featuring: (1) use of individual quasispecies env variants derived from an HIV-1 subtype A-infected subject exhibiting high levels of NAbs within the first year of infection that increased and broadened with time; (2) motif optimization of envs to enhance in vivo expression of DNA formulated as vaccines; and (3) a combined DNA plus protein boosting regimen. Vaccines consisted of multiple env variants delivered sequentially and a simpler regimen that utilized only the least and most divergent clones. The simpler regimen was as effective as the more complex approach in generating modest HNAbs and was more efficient when modified, motif-optimized DNA was used in combination with trimeric gp140 protein. This is a rationally designed strategy that facilitates future vaccine design by addressing the difficult problem of generating HNAbs to HIV by empirically testing the immunogenicity of naturally occurring quasispecies env variants.


Journal of Virology | 2017

Combination adenovirus and protein vaccines prevent infection or reduce viral burden after heterologous clade C simian-human immunodeficiency virus mucosal challenge

Delphine C. Malherbe; Jason Mendy; Lo Vang; Philip T. Barnette; Jason S. Reed; Samir K. Lakhashe; Joshua Owuor; Johannes S. Gach; Alfred W. Legasse; Michael K. Axthelm; Celia C. LaBranche; David C. Montefiori; Donald N. Forthal; Byung Park; James M. Wilson; James H. McLinden; Jinhua Xiang; Jack T. Stapleton; Jonah B. Sacha; Barton F. Haynes; Hua-Xin Liao; Ruth M. Ruprecht; Jonathan M. Smith; Marc Gurwith; Nancy L. Haigwood; Jeff Alexander

ABSTRACT HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines. IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.


PLOS ONE | 2013

HIV-1 Envelope Glycoprotein Resistance to Monoclonal Antibody 2G12 Is Subject-Specific and Context-Dependent in Macaques and Humans

Delphine C. Malherbe; Rogier W. Sanders; Marit J. van Gils; Byung Park; Michelle M. Gomes; Hanneke Schuitemaker; Susan W. Barnett; Nancy L. Haigwood

HIV-1 Envelope (Env) protein is the sole target of neutralizing antibodies (NAbs) that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS). Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIVSF162P4 infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs) B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways.

Collaboration


Dive into the Delphine C. Malherbe's collaboration.

Top Co-Authors

Avatar

Nancy L. Haigwood

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonidas Stamatatos

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Harlan Robins

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelly J. Krebs

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge