Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy L. Haigwood is active.

Publication


Featured researches published by Nancy L. Haigwood.


Nature Medicine | 1999

Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys

Riri Shibata; Tatsuhiko Igarashi; Nancy L. Haigwood; Alicia Buckler-White; Robert A. Ogert; William Ross; Ronald Willey; Michael W. Cho; Malcolm A. Martin

Virus–specific antibodies protect individuals against a wide variety of viral infections1–7. To assess whether human immunodeficiency virus type 1 (HIV–1) envelope–specific antibodies confer resistance against primate lentivirus infections, we purified immunoglobulin (IgG) from chimpanzees infected with several different HIV–1 isolates, and used this for passive immunization of pig–tailed macaques. These monkeys were subsequently challenged intravenously with a chimeric simian–human immunodeficiency virus (SHIV) bearing an envelope glycoprotein derived form HIV–1DH12, a dual–tropic primary virus isolate. Here we show that anti–SHIV neutralizing activity, determined in vitro using an assay measuring loss of infectivity, is the absolute requirement for antibody–mediated protection in vivo. Using an assay that measures 100% neutralization, the titer in plasma for complete protection of the SHIV–challenged macaques was in the range of 1:5–1:8. The HIV–1–specific neutralizing antibodies studied are able to bind to native gp120 present on infectious virus particles. Administration of non–neutralizing anti–HIV IgG neither inhibited nor enhanced a subsequent SHIV infection.


Journal of Virology | 2005

Recommendations for the Design and Use of Standard Virus Panels To Assess Neutralizing Antibody Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 Vaccines

John R. Mascola; Patricia D'Souza; Peter B. Gilbert; Beatrice H. Hahn; Nancy L. Haigwood; Lynn Morris; Christos J. Petropoulos; Victoria R. Polonis; Marcella Sarzotti; David C. Montefiori

Laboratory measures of antigen-specific immunity are an essential component of the vaccine discovery process. For human immunodeficiency virus type 1 (HIV-1), this process will likely require iterative evaluations of vaccine immunogens to choose the most promising vaccine candidates to advance into human trials. To optimally evaluate and compare vaccine immunogens, we will need high-throughput assays that allow accurate and reproducible measurements of immune responses. In addition, vaccine sponsors and regulatory agencies appropriately require that immune assays associated with human trials be performed in laboratories that comply with guidelines for good laboratory practices (GLP). The rigorous process of assay validation associated with GLP can improve the accuracy of immune assessment assays and contribute to vaccine development by advancing our ability to distinguish incremental improvements in immune responses elicited by novel immunogens. In this commentary, we address several of these issues with regard to the measurement of anti-HIV-1 neutralizing antibodies (NAbs). We recommend the use of DNA plasmids encoding full-length functional HIV-1 envelope glycoproteins (Env); these env clones, when transfected with an HIV-1 envdefective molecular clone, produce well-characterized HIV-1 Env pseudovirions. Additionally, we recommend the establishment of standardized panels of Env-pseudotyped viruses to assess the potencies and breadths of NAbs elicited by vaccine immunogens. These virus panels would form the basis for GLP neutralization assays used to assess sera from clinical vaccine studies, and the same virus panels could be used by investigators interested in the preclinical evaluation of vaccine immunogens.


Nature Medicine | 1999

Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma

Tatsuhiko Igarashi; Charles Brown; Ali Azadegan; Nancy L. Haigwood; Dimiter S. Dimitrov; Malcolm A. Martin; Riri Shibata

The concentration of human immunodeficiency virus type 1 (HIV–1) particles in blood plasma is very predictive of the subsequent disease course in an infected individual; its measurement has become one of the most important parameters for monitoring clinical status. Steady–state virus levels in plasma reflect a balance between the rates of virions entering and leaving the peripheral blood. We analyzed the rate of virus clearance in the general circulation in rhesus macaques receiving a continuous infusion of cell–free particles in the presence and absence of virus–specific antibodies. Here we show, by measuring virion RNA, particle–associated p24 Gag protein and virus infectivity, that the clearance of physical and infectious particles from a primary, dual–tropic virus isolate, HIV–1DH12, is very rapid in naive animals, with half–lives ranging from 13 to 26 minutes. In the presence of high–titer HIV–1DH12–specific neutralizing antibodies, the half–life of virion RNA was considerably reduced (to 3.9–7.2 minutes), and infectious virus in the blood became undetectable. Although physical virus particles were eliminated extravascularly, the loss of virus infectivity in the blood reflected the combined effects of extravascular clearance and intravascular inactivation of HIV–1 infectivity due to antibody binding.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transfer of neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers sterilizing protection: Implications for HIV-1 vaccine development

Yoshiaki Nishimura; Tatsuhiko Igarashi; Nancy L. Haigwood; Reza Sadjadpour; Olivia K. Donau; Charles E. Buckler; Ron Plishka; Alicia Buckler-White; Malcolm A. Martin

Passive transfer of high-titered antiviral neutralizing IgG, known to confer sterilizing immunity in pig-tailed monkeys, has been used to determine how soon after virus exposure neutralizing antibodies (NAbs) must be present to block a simian immunodeficiency virus (SIV)/HIV chimeric virus infection. Sterilizing protection was achieved in three of four macaques receiving neutralizing IgG 6 h after intravenous SIV/HIV chimeric virus inoculation as monitored by PCR analyses of and attempted virus isolations from plasma, peripheral blood mononuclear cell, and lymph node specimens. In the fourth animal, the production of progeny virus was suppressed for >4 weeks. A delay in transferring NAbs until 24 h after virus challenge resulted in infection in two of two monkeys. These results suggest that even if a vaccine capable of eliciting broadly reactive NAbs against primary HIV-1 were at hand, the Abs generated must remain at, or rapidly achieve, high levels within a relatively short period after exposure to virus to prevent the establishment of a primate lentivirus infection.


Journal of Virology | 2005

Human Immunodeficiency Virus Type 1 Subtype B Ancestral Envelope Protein Is Functional and Elicits Neutralizing Antibodies in Rabbits Similar to Those Elicited by a Circulating Subtype B Envelope

Nicole A. Doria-Rose; Gerald H. Learn; Allen G. Rodrigo; David C. Nickle; Fusheng Li; Madhumita Mahalanabis; Michael T. Hensel; Sherry McLaughlin; Paul Edmonson; David C. Montefiori; Susan W. Barnett; Nancy L. Haigwood; James I. Mullins

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.


Journal of Virology | 2009

Continuous Viral Escape and Selection by Autologous Neutralizing Antibodies in Drug-Naïve Human Immunodeficiency Virus Controllers

Pushpa Jayaraman; Toshiyuki Miura; Florencia Pereyra; E. Michael Chester; Barbra A. Richardson; Bruce D. Walker; Nancy L. Haigwood

ABSTRACT We assessed differences in the character and specificity of autologous neutralizing antibodies (ANAbs) against individual viral variants of the quasispecies in a cohort of drug-naïve subjects with long-term controlled human immunodeficiency virus type 1 (HIV-1) infection and moderate levels of broad heterologous neutralizing antibodies (HNAb). Functional plasma virus showed continuous env evolution despite a short time frame and low levels of viral replication. Neutralization-sensitive variants dominated in subjects with intermittent viral blips, while neutralization-resistant variants predominated in elite controllers. By sequence analysis of this panel of autologous variants with various sensitivities to neutralization, we identified more than 30 residues in envelope proteins (Env) associated with resistance or sensitivity to ANAbs. The appearance of new sensitive variants is consistent with a model of continuous selection and turnover. Strong ANAb responses directed against autologous Env variants are present in long-term chronically infected individuals, suggesting a role for these responses in contributing to the durable control of HIV replication.


Nature Medicine | 2010

Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques.

Cherie T. Ng; J. Pablo Jaworski; Pushpa Jayaraman; William F. Sutton; Patrick Delio; LaRene Kuller; David Anderson; Gary Landucci; Barbra A. Richardson; Dennis R. Burton; Donald N. Forthal; Nancy L. Haigwood

Maternal HIV-1–specific antibodies are efficiently transferred to newborns, but their role in disease control is unknown. We administered neutralizing IgG, including the human neutralizing monoclonal IgG1b12, at levels insufficient to block infection, to six newborn macaques before oral challenge with simian-HIV strain SF162P3 (SHIVSF162P3). All of the macaques rapidly developed neutralizing antibodies and had significantly reduced plasma viremia for six months. These studies support the use of neutralizing antibodies in enhancing B cell responses and viral control in perinatal settings.


Journal of Virology | 2003

Multigene DNA Priming-Boosting Vaccines Protect Macaques from Acute CD4+-T-Cell Depletion after Simian-Human Immunodeficiency Virus SHIV89.6P Mucosal Challenge

Nicole A. Doria-Rose; C. Ohlen; Patricia Polacino; Christopher C. Pierce; Michael T. Hensel; LaRene Kuller; Thera Mulvania; Donovan J. Anderson; Philip D. Greenberg; Shiu-Lok Hu; Nancy L. Haigwood

ABSTRACT We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4+-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4+ T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.


PLOS Medicine | 2008

The use of nonhuman primate models in HIV vaccine development

Cecilia Morgan; Marta L. Marthas; Christopher J. Miller; Ann Duerr; Cecilia Cheng-Mayer; Ronald C. Desrosiers; Nancy L. Haigwood; Shiu-Lok Hu; R. Paul Johnson; Jeffrey D. Lifson; David C. Montefiori; John P. Moore; Marjorie Robert-Guroff; Harriet L. Robinson; Steven G. Self; Lawrence Corey

Cecilia Morgan and colleagues outline a two-stage nonhuman primate screening strategy for T cell-based HIV-1 vaccines.


Journal of Virology | 2004

Passive Immunotherapy in Simian Immunodeficiency Virus-Infected Macaques Accelerates the Development of Neutralizing Antibodies

Nancy L. Haigwood; David C. Montefiori; William F. Sutton; Janela McClure; Andrew Watson; Gerald Voss; Vanessa M. Hirsch; Barbra A. Richardson; Norman L. Letvin; Shiu-Lok Hu; Philip R. Johnson

ABSTRACT Passively transferred neutralizing antibodies can block lentivirus infection, but their role in postexposure prophylaxis is poorly understood. In this nonhuman-primate study, the effects of short-term antibody therapy on 5-year disease progression, virus load, and host immunity were explored. We reported previously that postinfection passive treatment with polyclonal immune globulin with high neutralizing titers against SIVsmE660 (SIVIG) significantly improved the 67-week health of SIVsmE660-infected Macaca mulatta macaques. Four of six treated macaques maintained low or undetectable levels of virus in plasma, compared with one of ten controls, while two rapid progressors controlled viremia only as long as the SIVIG was present. SIVIG treatment delayed the de novo production of envelope (Env)-specific antibodies by 8 weeks (13). We show here that differences in disease progression were also significant at 5 years postinfection, excluding rapid progressors (P = 0.05). Macaques that maintained ≤103 virus particles per ml of plasma and ≤30 infectious virus particles per 106 mononuclear cells from peripheral blood and lymph nodes had delayed disease onset. All macaques that survived beyond 18 months had measurable Gag-specific CD8+ cytotoxic T cells, regardless of treatment. Humoral immunity in survivors beyond 20 weeks was strikingly different in the SIVIG and control groups. Despite a delay in Env-specific binding antibodies, de novo production of neutralizing antibodies was significantly accelerated in SIVIG-treated macaques. Titers of de novo neutralizing antibodies at week 12 were comparable to levels achieved in controls only by week 32 or later. Acceleration of de novo simian immunodeficiency virus immunity in the presence of passively transferred neutralizing antibodies is a novel finding with implications for postexposure prophylaxis and vaccines.

Collaboration


Dive into the Nancy L. Haigwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole A. Doria-Rose

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shiu-Lok Hu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

LaRene Kuller

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonidas Stamatatos

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge