Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delphine Lannuzel is active.

Publication


Featured researches published by Delphine Lannuzel.


Journal of Geophysical Research | 2012

Natural iron fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic Peninsula

Jeroen de Jong; Véronique Schoemann; Delphine Lannuzel; Peter Croot; Hein J. W. de Baar; Jean-Louis Tison

In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated “fe” ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.


Geophysical Research Letters | 2012

Chlorophyll a in Antarctic sea ice from historical ice core data

Klaus M. Meiners; Martin Vancoppenolle; S. Thanassekos; Gerhard Dieckmann; David N. Thomas; Jean-Louis Tison; Kevin R. Arrigo; D. L. Garrison; Andrew McMinn; Delphine Lannuzel; P. van der Merwe; Kerrie M. Swadling; Walker O. Smith; Igor A. Melnikov; Ben Raymond

Sea ice core chlorophyll a data are used to describe the seasonal, regional and vertical distribution of algal biomass in Southern Ocean pack ice. The Antarctic Sea Ice Processes and Climate – Biology (ASPeCt – Bio) circumpolar dataset consists of 1300 ice cores collected during 32 cruises over a period of 25 years. The analyses show that integrated sea ice chlorophyll a peaks in early spring and late austral summer, which is consistent with theories on light and nutrient limitation. The results indicate that on a circum-Antarctic scale, surface, internal and bottom sea ice layers contribute equally to integrated biomass, but vertical distribution shows distinct differences among six regions around the continent. The vertical distribution of sea ice algal biomass depends on sea ice thickness, with surface communities most commonly associatedwith thin ice (<0.4m), and ice ofmoderate thickness (0.4– 1.0 m) having the highest probability of forming bottom communities.


Analytica Chimica Acta | 2008

High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation.

Jeroen de Jong; Véronique Schoemann; Delphine Lannuzel; Jean-Louis Tison; Nadine Mattielli

In the present paper we describe a robust and simple method to measure dissolved iron (DFe) concentrations in seawater down to <0.1 nmol L(-1) level, by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using a (54)Fe spike and measuring the (57)Fe/(54)Fe ratio. The method provides for a pre-concentration step (100:1) by micro-columns filled with the resin NTA Superflow of 50 mL seawater samples acidified to pH 1.9. NTA Superflow is demonstrated to quantitatively extract Fe from acidified seawater samples at this pH. Blanks are kept low (grand mean 0.045+/-0.020 nmol L(-1), n=21, 3 x S.D. limit of detection per session 0.020-0.069 nmol L(-1) range), as no buffer is required to adjust the sample pH for optimal extraction, and no other reagents are needed than ultrapure nitric acid, 12 mM H(2)O(2), and acidified (pH 1.9) ultra-high purity (UHP) water. We measured SAFe (sampling and analysis of Fe) reference seawater samples Surface-1 (0.097+/-0.043 nmol L(-1)) and Deep-2 (0.91+/-0.17 nmol L(-1)) and obtained results that were in excellent agreement with their DFe consensus values: 0.118+/-0.028 nmol L(-1) (n=7) for Surface-1 and 0.932+/-0.059 nmol L(-1) (n=9) for Deep-2. We also present a vertical DFe profile from the western Weddell Sea collected during the Ice Station Polarstern (ISPOL) ice drift experiment (ANT XXII-2, RV Polarstern) in November 2004-January 2005. The profile shows near-surface DFe concentrations of approximately 0.6 nmol L(-1) and bottom water enrichment up to 23 nmol L(-1) DFe.


Analytica Chimica Acta | 2010

Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry

Andrew R. Bowie; Ashley T. Townsend; Delphine Lannuzel; Tomas Remenyi; Pier van der Merwe

Trace elements often limit phytoplankton growth in the ocean, and the quantification of particulate forms is essential to fully understand their biogeochemical cycling. There is presently a lack of reliable measurements on the trace elemental content of marine particles, in part due to the inadequacies of the sampling and analytical methods employed. Here we report on the development of a series of state-of-the-art trace metal clean methods to collect and process oceanic particulate material in open-ocean and sea ice environments, including sampling, size-fractionated filtration, particle digestions and analysis by magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS). Particular attention was paid to the analysis of certified reference materials (CRMs) and field blanks, which are typically the limiting factor for the accurate analysis of low concentrations of trace metals in marine particulate samples. Theoretical detection limits (3 s of the blank) were low for all 17 elements considered, and varied according to filter material and porosity (sub-microg L(-1) for polycarbonate filters and 1-2 microg L(-1) for quartz and polyester filters). Analytical accuracy was verified using fresh water CRMs, with excellent recoveries noted (93-103%). Digestion efficiencies for various acid combinations were assessed using sediment and plankton CRMs. Using nitric acid only, good recoveries (79-90%) were achieved for Mo, Cd, Ba, Pb, Mn, Fe, Co, Ni, Cu, Zn and Ga. The addition of HF was necessary for the quantitative recovery of the more refractory trace elements such as U, Al, V and Cr. Bioactive elements such as P can also be analysed and used as a biomass normaliser. Our developed sampling and analytical methods proved reliable when applied during two major field programs in both the open Southern Ocean and Antarctic sea ice environments during the International Polar Year in 2007. Trace elemental data are presented for particulate samples collected in both suspended and sinking marine material, and also within sea ice cores.


Journal of Geophysical Research | 2014

Southern Ocean CO2 sink: The contribution of the sea ice

Bruno Delille; Martin Vancoppenolle; Nicolas-Xavier Geilfus; B. Tilbrook; Delphine Lannuzel; Véronique Schoemann; Sylvie Becquevort; Gauthier Carnat; D. Delille; Christiane Lancelot; Lei Chou; Gerhard Dieckmann; Jean-Louis Tison

We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first estimates of spring and summer CO2 uptake from the atmosphere by Antarctic sea ice. Over the spring-summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean.


PLOS ONE | 2014

The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling

Lavenia Ratnarajah; Andrew R. Bowie; Delphine Lannuzel; Klaus M. Meiners; Stephen Nicol

The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.


Analytical Methods | 2014

Advances in the offline trace metal extraction of Mn, Co, Ni, Cu, Cd, and Pb from open ocean seawater samples with determination by sector field ICP-MS analysis

Fabien Quéroué; Ashley T. Townsend; Pier van der Merwe; Delphine Lannuzel; Géraldine Sarthou; Eva Bucciarelli; Andrew R. Bowie

Trace metals are fundamental components of various biochemical reactions for phytoplankton. They serve as micronutrients and therefore play a key role in marine biogeochemical cycles. International programs such as GEOTRACES require fast, sensitive and reliable methods for the simultaneous analysis of multiple trace elements in seawater. This paper reports the development of a simplified, automated, low cost, portable, off-line extraction method with high sample throughput. The extraction uses the chelating resin Nobias-chelate PA1 offering an extraction factor of 18 from 27 mL of seawater. This solid phase extraction has been coupled with Sector Field-Inductively Coupled Plasma-Mass Spectrometry (SF-ICP-MS) for analysing dissolved manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu), cadmium (dCd) and lead (dPb). An optimum pH of 6.2 was selected allowing quantitative recovery of most elements of interest, offering stable Cu and minimum molybdenum (Mo) recoveries, limiting interferences of Cd determination. Picomolar or subpicomolar trace metal blank concentrations and detection limits were obtained suitable for open ocean sample measurements. Regular analysis of reference seawater samples (SAFe, GEOTRACES and in-house seawater) showed excellent short-term and medium-term precision (1–8% RSD) and accuracy of the method. Twenty four samples, 3 blanks, 6 standard addition calibration samples, 3 replicates of in-house seawater and 2 reference seawater samples were extracted daily. The method has been successfully applied to the analysis of seawater samples from the Southern and Pacific Oceans.


Nature Geoscience | 2010

On the importance of hydrothermalism to the oceanic dissolved iron inventory.

Alessandro Tagliabue; Laurent Bopp; Jean-Claude Dutay; Andrew R. Bowie; Fanny Chever; Philippe Jean-Baptiste; Eva Bucciarelli; Delphine Lannuzel; Thomas Remenyi; Géraldine Sarthou; Olivier Aumont; M. Gehlen; Catherine Jeandel

Iron limits phytoplankton growth and hence the biological carbon pump in the Southern Ocean. Models assessing the impacts of iron on the global carbon cycle generally rely on dust input and sediment resuspension as the predominant sources. Although it was previously thought that most iron from deep-ocean hydrothermal activity was inaccessible to phytoplankton because of the formation of particulates, it has been suggested that iron from hydrothermal activity may be an important source of oceanic dissolved iron. Here we use a global ocean model to assess the impacts of an annual dissolved iron flux of approximately 9 108 mol, as estimated from regional observations of hydrothermal activity, on the dissolved iron inventory of the worlds oceans. We find the response to the input of hydrothermal dissolved iron is greatest in the Southern Hemisphere oceans. In particular, observations of the distribution of dissolved iron in the Southern Ocean3 (Chever et al., manuscript in preparation; Bowie et al., manuscript in preparation) can be replicated in our simulations only when our estimated iron flux from hydrothermal sources is included. As the hydrothermal flux of iron is relatively constant over millennial timescales, we propose that hydrothermal activity can buffer the oceanic dissolved iron inventory against shorter-term fluctuations in dust deposition.


Journal of Geophysical Research | 2016

Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica

L. Herraiz-Borreguero; Delphine Lannuzel; P. van der Merwe; A Treverrow; J. B. Pedro

The Antarctic continental shelf supports a high level of marine primary productivity and is a globally important carbon dioxide (CO2) sink through the photosynthetic fixation of CO2 via the biological pump. Sustaining such high productivity requires a large supply of the essential micronutrient iron (Fe); however, the pathways for Fe delivery to these zones vary spatially and temporally. Our study is the first to report a previously unquantified source of concentrated bioavailable Fe to Antarctic surface waters. We hypothesize that Fe derived from subglacial processes is delivered to euphotic waters through the accretion (Fe storage) and subsequent melting (Fe release) of a marine-accreted layer of ice at the base of the Amery Ice Shelf (AIS). Using satellite-derived Chlorophyll-a data, we show that the soluble Fe supplied by the melting of the marine ice layer is an order of magnitude larger than the required Fe necessary to sustain the large annual phytoplankton bloom in Prydz Bay. Our finding of high concentrations of Fe in AIS marine ice and recent data on increasing rates of ice shelf basal melt in many of Antarcticas ice shelves should encourage further research into glacial and marine sediment transport beneath ice shelves and their sensitivity to current changes in basal melt. Currently, the distribution, volume, and Fe concentration of Antarctic marine ice is poorly constrained. This uncertainty, combined with variable forecasts of increased rates of ice shelf basal melt, limits our ability to predict future Fe supply to Antarctic coastal waters.


Frontiers of Earth Science in China | 2018

Organic Matter Controls of Iron Incorporation in Growing Sea Ice

Julie Janssens; Klaus M. Meiners; Ashley T. Townsend; Delphine Lannuzel

This study presents the first laboratory-controlled sea-ice growth experiment conducted under trace metal clean conditions. The role played by organic matter, in the incorporation of iron (Fe) into sea ice was investigated by means of laboratory ice-growth experiments using a titanium cold-finger apparatus. Experiments were also conducted to understand the role of extracellular polymeric substances (EPS) in the enrichment of ammonium in sea ice. Sea ice was grown from several seawater solutions containing different quantities and qualities of particulate Fe (PFe), dissolved Fe (DFe) and organic matter. Sea ice and seawater were analyzed for particulate organic carbon and nitrogen, macro-nutrients, extracellular EPS, PFe and DFe, and particulate aluminium. The experiments showed that biogenic PFe is preferentially incorporated into sea ice compared to lithogenic PFe. Furthermore, sea ice grown from ultra-violet (UV) and non-UV treated seawaters exhibits contrasting incorporation rates of organic matter and Fe. Whereas the effects of UV-treatments were not always significant, we do find indications that the type or organic matter controls the enrichment of Fe in forming sea ice.. Specifically, we come to the conclusion that the incorporation of DFe is favored by the presence of organic ligands in the source solution.

Collaboration


Dive into the Delphine Lannuzel's collaboration.

Top Co-Authors

Avatar

Jean-Louis Tison

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Véronique Schoemann

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Bowie

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus M. Meiners

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Lei Chou

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jeroen de Jong

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Sylvie Becquevort

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge