Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Klaus M. Meiners is active.

Publication


Featured researches published by Klaus M. Meiners.


Global Change Biology | 2014

Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota

Andrew Constable; Jessica Melbourne-Thomas; Stuart Corney; Kevin R. Arrigo; Christophe Barbraud; David K. A. Barnes; Nl Bindoff; Philip W. Boyd; A. Brandt; Daniel P. Costa; Andrew T. Davidson; Hugh W. Ducklow; Louise Emmerson; Mitsuo Fukuchi; Julian Gutt; Mark A. Hindell; Eileen E. Hofmann; Graham W. Hosie; Takahiro Iida; Sarah Jacob; Nadine M. Johnston; So Kawaguchi; Nobuo Kokubun; Philippe Koubbi; Mary-Anne Lea; Azwianewi B. Makhado; Ra Massom; Klaus M. Meiners; Michael P. Meredith; Eugene J. Murphy

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Geophysical Research Letters | 2012

Chlorophyll a in Antarctic sea ice from historical ice core data

Klaus M. Meiners; Martin Vancoppenolle; S. Thanassekos; Gerhard Dieckmann; David N. Thomas; Jean-Louis Tison; Kevin R. Arrigo; D. L. Garrison; Andrew McMinn; Delphine Lannuzel; P. van der Merwe; Kerrie M. Swadling; Walker O. Smith; Igor A. Melnikov; Ben Raymond

Sea ice core chlorophyll a data are used to describe the seasonal, regional and vertical distribution of algal biomass in Southern Ocean pack ice. The Antarctic Sea Ice Processes and Climate – Biology (ASPeCt – Bio) circumpolar dataset consists of 1300 ice cores collected during 32 cruises over a period of 25 years. The analyses show that integrated sea ice chlorophyll a peaks in early spring and late austral summer, which is consistent with theories on light and nutrient limitation. The results indicate that on a circum-Antarctic scale, surface, internal and bottom sea ice layers contribute equally to integrated biomass, but vertical distribution shows distinct differences among six regions around the continent. The vertical distribution of sea ice algal biomass depends on sea ice thickness, with surface communities most commonly associatedwith thin ice (<0.4m), and ice ofmoderate thickness (0.4– 1.0 m) having the highest probability of forming bottom communities.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice

Graham J. C. Underwood; Shazia N. Aslam; Christine Michel; Andrea Niemi; Louiza Norman; Klaus M. Meiners; Johanna Laybourn-Parry; Harriet Paterson; David N. Thomas

Significance Many marine microalgae and bacteria secrete polysaccharide gels (exopolymers) in response to environmental stresses, such as the freezing temperatures and salt concentrations that organisms experience when in sea ice. This study of sea ice cores from both the Antarctic and Arctic identified compelling relationships between ice thickness and salinity, algal biomass, and the concentration of polysaccharides in the ice. Knowing the first three parameters, we were able to predict the polysaccharide concentrations of the ice. This predictability is the first step in estimating the importance of such secretions to the organic carbon content of the millions of square kilometers of the ice-covered Arctic and Southern Oceans. Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.


PLOS ONE | 2014

The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling

Lavenia Ratnarajah; Andrew R. Bowie; Delphine Lannuzel; Klaus M. Meiners; Stephen Nicol

The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.


Antarctic Science | 2013

Quantification of ikaite in Antarctic sea ice

Michael Fischer; David N. Thomas; Andreas Krell; Gernot Nehrke; Jörg Göttlicher; Louiza Norman; Klaus M. Meiners; Catherine Riaux-Gobin; Gerhard Dieckmann

Abstract Calcium carbonate precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice, although it is hypothesized that high quantities of dissolved organic matter and/or phosphate (common in sea ice) may inhibit its formation. In this quantitative study of hydrous calcium carbonate as ikaite, sea ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during two expeditions, one in the East Antarctic sector and the other off Terre Adélie. Samples were analysed for CaCO3, salinity, dissolved organic carbon/nitrogen, inorganic phosphate, and total alkalinity. No relationship between these parameters and CaCO3 precipitation was evident. Ikaite was found mostly in the uppermost layers of sea ice with maximum concentrations of up to 126 mg ikaite per litre melted sea ice being measured, although both the temporal and horizontal spatial distributions of ikaite were highly heterogeneous. The precipitate was also found in the snow on top of the sea ice at some of the sampling locations.


Eos, Transactions American Geophysical Union | 2013

Beyond point measurements: sea ice floes characterized in 3-D

Gd Williams; Ted Maksym; Clayton Kunz; Peter Kimball; Hanumant Singh; Jeremy Wilkinson; Tom Lachlan-Cope; Ernesto Trujillo; Ad Steer; Ra Massom; Klaus M. Meiners; Petra Heil; Jl Lieser; Katherine Colby Leonard; Chris Murphy

A new methodology for coincident floe-scale measurements of the surface elevation, snow depth, and ice draft (the thickness below the water line) of Antarctic sea ice has been demonstrated during two recent research voyages: the Australian-led Sea Ice Physics and Ecosystem Experiment II (SIPEX II) to East Antarctica in September–November 2012 and the United Kingdom–led Ice Mass Balance in the Bellingshausen Sea (ICEBell) voyage to the Weddell and Bellingshausen Seas in November 2010


Polar Biology | 2009

Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)

Ben Raymond; Klaus M. Meiners; C. W. Fowler; B. Pasquer; Gd Williams; Stephen Nicol

We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E–150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E–100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.


Journal of Geophysical Research | 2017

Influence of snow depth and surface flooding on light transmission through Antarctic pack ice

Stefanie Arndt; Klaus M. Meiners; Robert Ricker; Thomas Krumpen; Christian Katlein; Marcel Nicolaus

Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100m-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.


Geophysical Research Letters | 2016

Under ice habitats for Antarctic krill larvae: could less mean more under climate warming?

Jessica Melbourne-Thomas; Stuart Corney; Rowan Trebilco; Klaus M. Meiners; R. P. Stevens; So Kawaguchi; Michael D. Sumner; Andrew Constable

Overwintering of larvae underneath Antarctic pack ice is a critical stage in the life cycle of Antarctic krill. However, there are no circumpolar assessments of available habitat for larval krill, making it difficult to evaluate how climate change may impact this life stage. We use outputs from a circumpolar sea ice model, together with a set of simple assumptions regarding key habitat features, to identify possible regions of larval krill habitat around Antarctica during winter. We assume that the location and suitability of habitat is determined by both food availability and three-dimensional complexity of the sea ice. A comparison of the combined area of these regions under current conditions with a warm climate scenario indicates that while total areal sea ice extent decreases, there is a consistently larger area of potential larval krill habitat under warm conditions. These findings suggest that decreases in sea ice extent may not necessarily be detrimental for krill populations.


Nature Ecology and Evolution | 2017

The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill

Bettina Meyer; Ulrich Freier; Volker Grimm; Jürgen Groeneveld; Brian P. V. Hunt; Sven E. Kerwath; Rob King; Christine Klaas; E. A. Pakhomov; Klaus M. Meiners; Jessica Melbourne-Thomas; Eugene J. Murphy; Sally E. Thorpe; Dieter Wolf-Gladrow; Lutz Auerswald; Albrecht Götz; Laura Halbach; Simon N. Jarman; So Kawaguchi; Thomas Krumpen; Gernot Nehrke; Robert Ricker; Michael D. Sumner; Mathias Teschke; Rowan Trebilco; I. Noyan Yilmaz

A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.Winter sea ice is thought to provide critical grazing habitat for overwintering Antarctic krill. In contrast, here the authors show that the pack-ice zone is a food-poor habitat, but does serve as an important sheltering ground for developing larvae.

Collaboration


Dive into the Klaus M. Meiners's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Nicolaus

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

So Kawaguchi

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Kiko

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Gerhard Dieckmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Gernot Nehrke

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge