Delphine Madur
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Delphine Madur.
Genetics | 2005
Letizia Camus-Kulandaivelu; Jean-Baptiste Veyrieras; Delphine Madur; Valérie Combes; Marie Fourmann; Stéphanie Barraud; Pierre Dubreuil; Brigitte Gouesnard; Domenica Manicacci; Alain Charcosset
To investigate the genetic basis of maize adaptation to temperate climate, collections of 375 inbred lines and 275 landraces, representative of American and European diversity, were evaluated for flowering time under short- and long-day conditions. The inbred line collection was genotyped for 55 genomewide simple sequence repeat (SSR) markers. Comparison of inbred line population structure with that of landraces, as determined with 24 SSR loci, underlined strong effects of both historical and modern selection on population structure and a clear relationship with geographical origins. The late tropical groups and the early “Northern Flint” group from the northern United States and northern Europe exhibited different flowering times. Both collections were genotyped for a 6-bp insertion/deletion in the Dwarf8 (D8idp) gene, previously reported to be potentially involved in flowering time variation in a 102 American inbred panel. Among-group D8idp differentiation was much higher than that for any SSR marker, suggesting diversifying selection. Correcting for population structure, D8idp was associated with flowering time under long-day conditions, the deletion allele showing an average earlier flowering of 29 degree days for inbreds and 145 degree days for landraces. Additionally, the deletion allele occurred at a high frequency (>80%) in Northern Flint while being almost absent (<5%) in tropical materials. Altogether, these results indicate that Dwarf8 could be involved in maize climatic adaptation through diversifying selection for flowering time.
Genetics | 2008
Sébastien Ducrocq; Delphine Madur; Jean-Baptiste Veyrieras; Letizia Camus-Kulandaivelu; Monika Kloiber-maitz; Thomas Presterl; Milena Ouzunova; Domenica Manicacci; Alain Charcosset
An association study conducted on 375 maize inbred lines indicates a strong relationship between Vgt1 polymorphisms and flowering time, extending former quantitative trait loci (QTL) mapping results. Analysis of allele frequencies in a landrace collection supports a key role of Vgt1 in maize altilatitudinal adaptation.
Molecular Breeding | 2003
David Chagné; Garth R. Brown; Céline Lalanne; Delphine Madur; David Pot; David B. Neale; Christophe Plomion
Genetic markers developed from expressed sequence tags (ESTs) were used as orthologous loci for comparative genome studies in the genus Pinus. A total of 309 ESTs derived from conifer gene sequences were tested for amplification and polymorphism in maritime pine (Pinus pinaster Ait.). Electrophoresis-based techniques made it possible to map 50 expressed sequence tag polymorphisms (ESTPs). The map positions of 32 markers were compared to putative orthologous loci on the loblolly pine (Pinus taeda L.) linkage map, which is the reference map of the conifer genetic mapping community. Overall, synteny was maintained between the two species. This report agrees with other pairwise genome comparisons in pine and supports the cytogenetic evidence that chromosome evolution in the genus is conservative. The alignment of homologous linkage groups allowed, for the first time in conifers, the comparison of QTL location. The position of two QTLs controlling wood density and cell wall components were found to be conserved between the two species.
Genetics | 2012
Amandine Larièpe; Brigitte Mangin; Sylvain Jasson; Valérie Combes; Fabrice Dumas; Philippe Jamin; Christine Lariagon; Daniel Jolivot; Delphine Madur; Julie B. Fiévet; A. Gallais; Pierre Dubreuil; Alain Charcosset; Laurence Moreau
Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the “classical” NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits.
Genetics | 2009
Sébastien Ducrocq; Catherine Giauffret; Delphine Madur; Valérie Combes; Fabrice Dumas; Sophie Jouanne; Denis Coubriche; Philippe Jamin; Laurence Moreau; Alain Charcosset
Flowering time is a major adaptive trait in plants and an important selection criterion for crop species. In maize, however, little is known about its molecular basis. In this study, we report the fine mapping and characterization of a major quantitative trait locus located on maize chromosome 10, which regulates flowering time through photoperiod sensitivity. This study was performed in near-isogenic material derived from a cross between the day-neutral European flint inbred line FV286 and the tropical short-day inbred line FV331. Recombinant individuals were identified among a large segregating population and their progenies were scored for flowering time. Combined genotypic characterization led to delimit the QTL to an interval of 170 kb and highlighted an unbalanced recombination pattern. Two bacterial artificial chromosomes (BACs) covering the region were analyzed to identify putative candidate genes, and synteny with rice, sorghum, and brachypodium was investigated. A gene encoding a CCT domain protein homologous to the rice Ghd7 heading date regulator was identified, but its causative role was not demonstrated and deserves further analyses. Finally, an association study showed a strong level of linkage disequilibrium over the region and highlighted haplotypes that could provide useful information for the exploitation of genetic resources and marker-assisted selection in maize.
Genetics | 2014
Renaud Rincent; Laurence Moreau; Hervé Monod; Estelle Kuhn; Albrecht E. Melchinger; R. A. Malvar; Jesús Moreno-González; Stéphane D. Nicolas; Delphine Madur; Valérie Combes; Fabrice Dumas; Thomas Altmann; Dominique Brunel; Milena Ouzunova; Pascal Flament; Pierre Dubreuil; Alain Charcosset; Tristan Mary-Huard
Association mapping has permitted the discovery of major QTL in many species. It can be applied to existing populations and, as a consequence, it is generally necessary to take into account structure and relatedness among individuals in the statistical model to control false positives. We analytically studied power in association studies by computing noncentrality parameter of the tests and its relationship with parameters characterizing diversity (genetic differentiation between groups and allele frequencies) and kinship between individuals. Investigation of three different maize diversity panels genotyped with the 50k SNPs array highlighted contrasted average power among panels and revealed gaps of power of classical mixed models in regions with high linkage disequilibrium (LD). These gaps could be related to the fact that markers are used for both testing association and estimating relatedness. We thus considered two alternative approaches to estimating the kinship matrix to recover power in regions of high LD. In the first one, we estimated the kinship with all the markers that are not located on the same chromosome than the tested SNP. In the second one, correlation between markers was taken into account to weight the contribution of each marker to the kinship. Simulations revealed that these two approaches were efficient to control false positives and were more powerful than classical models.
Genetics | 2010
Yung-Fen Huang; Delphine Madur; Valérie Combes; Chin Long Ky; Denis Coubriche; Philippe Jamin; Sophie Jouanne; Fabrice Dumas; Ellen Bouty; Pascal Bertin; Alain Charcosset; Laurence Moreau
Using advanced intermated populations has been proposed as a way to increase the accuracy of mapping experiments. An F3 population of 300 lines and an advanced intermated F3 population of 322 lines, both derived from the same parental maize inbred lines, were jointly evaluated for dry grain yield (DGY), grain moisture (GM), and silking date (SD). Genetic variance for dry grain yield was significantly lower in the intermated population compared to the F3 population. The confidence interval around a QTL was on average 2.31 times smaller in the intermated population compared to the F3 population. One controversy surrounding QTL mapping is whether QTL identified in fact represent single loci. This study identifies two distinct loci for dry grain yield in the intermated population in coupling phase, while the F3 identifies only a single locus. Surprisingly, fewer QTL were detected in the intermated population than the F3 (21 vs. 30) and <50% of the detected QTL were shared among the two populations. Cross-validation showed that selection bias was more important in the intermated population than in the F3 and that each detected QTL explained a lower percentage of the variance. This finding supports the hypothesis that QTL detected in conventional populations correspond mainly to clusters of linked QTL. The actual number of QTL involved in the genetic architecture of complex traits may be substantially larger, with effect sizes substantially smaller than in conventional populations.
Theoretical and Applied Genetics | 2012
Tatiana Zerjal; Agnès Rousselet; Corinne Mhiri; Valérie Combes; Delphine Madur; Marie-Angèle Grandbastien; Alain Charcosset; Maud I. Tenaillon
Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3′ end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation.
Tree Genetics & Genomes | 2005
Ivan Scotti; Andrea Burelli; Federica Cattonaro; David Chagné; John Fuller; Peter E. Hedley; Gunnar Jansson; Céline Lalanne; Delphine Madur; David B. Neale; Christophe Plomion; W. Powell; Michela Troggio; Michele Morgante
In order to analyze the large-scale structure of the genome of Norway spruce (Picea abies Karst.), a pseudo-testcross genetic linkage map was built using markers of six different types, belonging to the low (amplified fragment length polymorphisms, simple sequence repeats) or high (sequence-specific amplified polymorphisms, inter-retrotransposon amplified polymorphisms) copy-number fraction of the genome, and including expressed region-derived markers (expressed sequence tag polymorphisms). Twenty seven and 23 linkage groups of at least four markers were obtained for the female and the male parent maps, respectively. A subset of these linkage groups coalesced into 13 bi-parental linkage groups through markers shared between the two maps. This map was used to investigate the frequency of each marker type over chromosomes and the distribution of marker types relative to each other, using autocorrelation techniques. Our results show that, while the composition of chromosomes is homogeneous, low- and high-copy-number markers tend to occupy separate regions of the linkage groups, and that expressed sequences are preferentially associated with microsatellites and separated from retrotransposons. These results indicate that the spatial structure of Norway spruce chromosomes is not homogeneous.
Genetics | 2017
Héloïse Giraud; Cyril Bauland; Matthieu Falque; Delphine Madur; Valérie Combes; Philippe Jamin; Cécile Monteil; Jacques Laborde; Carine Palaffre; Antoine Gaillard; Philippe Blanchard; Alain Charcosset; Laurence Moreau
Understanding genetic architecture of hybrid performances is important for species showing heterosis. Giraud et al. evaluated an... Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using “testers” to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent–flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.