Jacques Laborde
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacques Laborde.
Genetics | 2012
Renaud Rincent; Denis Laloë; Stéphane D. Nicolas; Thomas Altmann; Dominique Brunel; P. Revilla; Víctor M. Rodríguez; Jesús Moreno-González; Albrecht E. Melchinger; Eva Bauer; C-C. Schoen; Nina Meyer; Catherine Giauffret; Cyril Bauland; Philippe Jamin; Jacques Laborde; Hervé Monod; Pascal Flament; Alain Charcosset; Laurence Moreau
Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived from the realized additive relationship matrix–best linear unbiased predictions model (RA–BLUP) were used to select the reference individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is available on request.
PLOS ONE | 2013
Sophie Bouchet; Bertrand Servin; Pascal Bertin; Delphine Madur; Valérie Combes; Fabrice Dumas; Dominique Brunel; Jacques Laborde; Alain Charcosset; Stéphane D Nicolas
The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT) gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD) estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide range of environments.
BMC Plant Biology | 2016
P. Revilla; Víctor M. Rodríguez; Amando Ordás; Renaud Rincent; Alain Charcosset; Catherine Giauffret; Albrecht E. Melchinger; Chris-Carolin Schön; Eva Bauer; Thomas Altmann; Dominique Brunel; Jesús Moreno-González; Laura Campo; Milena Ouzunova; A. Alvarez; José Ignacio Ruíz de Galarreta; Jacques Laborde; R. A. Malvar
BackgroundBreeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber. We recorded indirect measures for cold tolerance as the traits number of days from sowing to emergence, relative leaf chlorophyll content or quantum efficiency of photosystem II. Association mapping for identifying genes associated to cold tolerance in both panels was based on genotyping with 49,585 genome-wide single nucleotide polymorphism (SNP) markers.ResultsWe found 275 significant associations, most of them in the inbreds evaluated per se, in the flint panel, and under control conditions. A few candidate genes coincided between the current research and previous reports. A total of 47 flint inbreds harbored the favorable alleles for six significant quantitative trait loci (QTL) detected for inbreds per se evaluated under cold conditions, four of them had also the favorable alleles for the main QTL detected from the testcrosses. Only four dent inbreds (EZ47, F924, NK807 and PHJ40) harbored the favorable alleles for three main QTL detected from the evaluation of the dent inbreds per se under cold conditions. There were more QTL in the flint panel and most of the QTL were associated with days to emergence and ΦPSII.ConclusionsThese results open new possibilities to genetically improve cold tolerance either with genome-wide selection or with marker assisted selection.
Heredity | 2017
Sophie Bouchet; Pascal Bertin; Thomas Presterl; Philippe Jamin; Denis Coubriche; Brigitte Gouesnard; Jacques Laborde; Alain Charcosset
Plant architecture, phenology and yield components of cultivated plants have repeatedly been shaped by selection to meet human needs and adaptation to different environments. Here we assessed the genetic architecture of 24 correlated maize traits that interact during plant cycle. Overall, 336 lines were phenotyped in a network of 9 trials and genotyped with 50K single-nucleotide polymorphisms. Phenology was the main factor of differentiation between genetic groups. Then yield components distinguished dents from lower yielding genetic groups. However, most of trait variation occurred within group and we observed similar overall and within group correlations, suggesting a major effect of pleiotropy and/or linkage. We found 34 quantitative trait loci (QTLs) for individual traits and six for trait combinations corresponding to PCA coordinates. Among them, only five were pleiotropic. We found a cluster of QTLs in a 5 Mb region around Tb1 associated with tiller number, ear row number and the first PCA axis, the latter being positively correlated to flowering time and negatively correlated to yield. Kn1 and ZmNIP1 were candidate genes for tillering, ZCN8 for leaf number and Rubisco Activase 1 for kernel weight. Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components. This suggests a simpler genetic determinism with larger individual QTL effects for the first category.
Genetics | 2017
Héloïse Giraud; Cyril Bauland; Matthieu Falque; Delphine Madur; Valérie Combes; Philippe Jamin; Cécile Monteil; Jacques Laborde; Carine Palaffre; Antoine Gaillard; Philippe Blanchard; Alain Charcosset; Laurence Moreau
Understanding genetic architecture of hybrid performances is important for species showing heterosis. Giraud et al. evaluated an... Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using “testers” to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent–flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.
Theoretical and Applied Genetics | 2017
Amandine Larièpe; Laurence Moreau; Jacques Laborde; Cyril Bauland; Sofiane Mezmouk; Laurent Décousset; Tristan Mary-Huard; Julie B. Fiévet; Andre Gallais; Pierre Dubreuil; Alain Charcosset
Key messageGeneral and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data.AbstractMany studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.
G3: Genes, Genomes, Genetics | 2017
Héloïse Giraud; Cyril Bauland; Matthieu Falque; Delphine Madur; Valérie Combes; Philippe Jamin; Cécile Monteil; Jacques Laborde; Carine Palaffre; Antoine Gaillard; Philippe Blanchard; Alain Charcosset; Laurence Moreau
Identification of quantitative trait loci (QTL) involved in the variation of hybrid value is of key importance for cross-pollinated species such as maize (Zea mays L.). In a companion paper, we illustrated a new QTL mapping population design involving a factorial mating between two multiparental segregating populations. Six biparental line populations were developed from four founder lines in the Dent and Flint heterotic groups. They were crossed to produce 951 hybrids and evaluated for silage performances. Previously, a linkage analysis (LA) model that assumes each founder line carries a different allele was used to detect QTL involved in General and Specific Combining Abilities (GCA and SCA, respectively) of hybrid value. This previously introduced model requires the estimation of numerous effects per locus, potentially affecting QTL detection power. Using the same design, we compared this “Founder alleles” model to two more parsimonious models, which assume that (i) identity in state at SNP alleles from the same heterotic group implies identity by descent (IBD) at linked QTL (“SNP within-group” model) or (ii) identity in state implies IBD, regardless of population origin of the alleles (“Hybrid genotype” model). This last model assumes biallelic QTL with equal effects in each group. It detected more QTL on average than the two other models but explained lower percentages of variance. The “SNP within-group” model appeared to be a good compromise between the two other models. These results confirm the divergence between the Dent and Flint groups. They also illustrate the need to adapt the QTL detection model to the complexity of the allelic variation, which depends on the trait, the QTL, and the divergence between the heterotic groups.
Crop Science | 2010
Yves Barrière; Valérie Méchin; Dominique Denoue; Cyril Bauland; Jacques Laborde
Theoretical and Applied Genetics | 2014
Renaud Rincent; S. Nicolas; Sophie Bouchet; Thomas Altmann; Dominique Brunel; P. Revilla; R. A. Malvar; Jesús Moreno-González; Laura Campo; Albrecht E. Melchinger; Wolfgang Schipprack; Eva Bauer; C.-C. Schoen; Nina Meyer; Milena Ouzunova; Pierre Dubreuil; Catherine Giauffret; D. Madur; V. Combes; F. Dumas; Cyril Bauland; P. Jamin; Jacques Laborde; Pascal Flament; Laurence Moreau; Alain Charcosset
Crop Science | 2014
P. Revilla; Víctor M. Rodríguez; Amando Ordás; Renaud Rincent; Alain Charcosset; Catherine Giauffret; Albrecht E. Melchinger; Chris-Carolin Schön; Eva Bauer; Thomas Altmann; Dominique Brunel; Jesús Moreno-González; Laura Campo; Milena Ouzunova; Jacques Laborde; A. Alvarez; José Ignacio Ruíz de Galarreta; R. A. Malvar