Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Delu Zhang is active.

Publication


Featured researches published by Delu Zhang.


Journal of Applied Phycology | 2002

Effect of desert soil algae on the stabilization of fine sands

Chunxiang Hu; Yongding Liu; Lirong Song; Delu Zhang

Four filamentous cyanobacteria, Microcoleusvaginatus, Phormidium tenue,Scytonemajavanicum (Kutz.) and Nostoc sp., and asingle-celled green alga, Desmococcus olivaceus, allisolated from Shapotou (Ningxia Hui Autonomous Region of China), were batchcultured and inoculated onto unconsolidated sand in greenhouse and fieldexperiments. Their ability to reduce wind erosion in sands was quantified byusing a wind tunnel laboratory. The major factors related to cohesion of algalcrusts, such as biomass, species, species combinations, bioactivity, niche,growth phase of algae, moisture, thickness of the crusts, dust accretion(including dust content and manner of dust added) and other cryptogams(lichens,fungi and mosses) were studied. The best of the five species were M.vaginatus and P. tenue, while the best mix wasablend of 80% M. vaginatus and 5% each of P.tenue,S. javanicum,Nostocsp. and D. olivaceus. The threshold friction velocity wassignificantly increased by the presence of all of the cyanobacterial species,while the threshold impact velocity was notably increased only by thefilamentous species. Thick crusts were less easily eroded than thin crusts,while biomass was more effective than thickness. Dust was incorporated bestintoMicrocoleus crust when added in small amounts over time,and appeared to increase growth of the cyanobacterium as well as strengthen thecohesion of the crust. Microbial crust cohesion was mainly attributed to algalaggregation, while lichens, fungi and mosses affected more the soil structureand physico-chemical properties.


Plant and Soil | 2003

The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts

Chunxiang Hu; Delu Zhang; Zebo Huang; Yongding Liu

Substantial amounts of algal crusts were collected from five different desert experimental sites aged 42, 34, 17, 8 and 4 years, respectively, at Shapotou (China) and analyzed at a 0.1 mm microscale of depth. It was found that the vertical distribution of cyanobacteria and microalgae in the crusts was distinctly laminated into an inorganic-layer (ca.0.00–0.02 mm, with few algae), an algae-dense-layer (ca.0.02–1.0 mm) and an algae-sparse-layer (ca.1.0–5.0 mm). It was interesting to note that in all crusts Scytonema javanicum Born et Flah (or Nostoc sp., cyanobacterium), Desmococcus olivaceus (Pers ex Ach., green alga) Laundon and Microcoleus vaginatus Gom. (cyanobacterium) dominated at the depth of 0.02–0.05, 0.05–0.1 and 0.1–1.0 mm, respectively, from the surface. Phormidium tenue Gom. (or Lyngbya cryptovaginatus Schk., cyanobacterium) and Navicula cryptocephala Kutz.(or Hantzschia amphioxys (Ehr.) Grun. and N. cryptocephala together, diatom) dominated at the depth of 1.0–3.0 and 3.5–4.0 mm, respectively, of the crusts from the 42 and 34 year old sites. It was apparent that in more developed crusts there were more green algae and the niches of Nostoc sp., Chlorella vulgaris Beij., M. vaginatus, N. cryptocephala and fungi were nearer to the surface. If lichens and mosses accounted for less than 41.5% of the crust surface, algal biovolume was bigger when the crust was older, but the opposite was true when the cryptogams other than algae covered more than 70%. In addition to detailed species composition and biovolume, analyses of soil physicochemical properties, micromorphologies and mineral components were also performed. It was found that the concentration of organic matter and nutrients, electric conductivity, silt, clay, secondary minerals were higher and there were more micro-beddings in the older crusts than the less developed ones. Possible mechanisms for the algal vertical microdistribtion at different stages and the impact of soil topography on crust development are discussed. It is concluded that biomethods (such as fine species distribution and biovolume) were more precise than mineralogical approaches in judging algal crust development and thus could be a better means to measure the potentiality of algal crusts in desert amelioration.


Environmental Earth Sciences | 2012

Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China)

Shubin Lan; Li Wu; Delu Zhang; Chunxiang Hu

In order to investigate succession of biological soil crusts (BSCs) and their microstructure variability, we conducted this work in Shapotou revegetation region at the southeast edge of Tengger Deser. The results showed that BSCs generally succeeded as a pathway of “Algae crusts, algae–lichen crusts, lichen crusts, lichen–moss crusts and moss crusts”. Occasionally mosses directly occurred on algae crusts, and BSCs succeeded from algae crusts to moss crusts. Crust vertical stratification was a common phenomenon, from top to bottom an inorganic layer, algae-dense layer and algae-sparse layer were divided in algae crusts; a thallus layer, rhizoid layer and sub-rhizoid layer in lichen crusts; a “stem-leaf” layer, rhizoid layer and sub-rhizoid layer in moss crusts, respectively. The main crust binding organisms varied from filamental cyanobacteria (dominated by Microcoleus) in algae crusts to lichen rhizoids, free-living cyanobacterial filaments and fungal hyphaes in lichen crusts, and to moss rhizoids and fungal hyphaes in moss crusts. The dominant phototrophic organisms varied from Microcoleus (algae) in algae crusts to Collema (lichens) in lichen crusts, and to Bryum (or Didymodon and Tortula; mosses) in moss crusts. Total phototrophic biomass increased while the free-living algal biomass decreased with the succession of BSCs. In addition, exopolysaccharides and fine particles accumulated in the course of development and succession of BSCs, all of which lead to a gradual increase in crust thickness and porosity, while decrease in the bulk density.


Bioresource Technology | 2013

Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.

Ling Xia; Hongmei Ge; Xuping Zhou; Delu Zhang; Chunxiang Hu

In this study, Scenedesmus obtusus XJ-15 was firstly selected from seven strains microalgae (Chlorophyta, Scenedesmaceae) and then cultivated using a two-stage strategy, which composed of fast cell growth in stage I and followed by lipid induction in stage II in 5-L flasks outdoors. In stage I, the biomass productivity was increased from 139.4 to 212.1 mg L(-1) d(-1). In stage II, lipid content was increased from 26.1% to 47.7% by adding NaCl into the culture. This two-stage process was also realized in an 140-L photobioreactor outdoors, with a biomass productivity of 86.5 mg L(-1) d(-1) and CO2 fixation rate of 170.0 mg L(-1) d(-1) in the first stage, and high lipid content of 42.1% in the second stage. With such a culture strategy, the overall lipid productivity was improved and better biodiesel quality was obtained. These results suggested the photoautotrophic two-stage system was not only feasible but also effective.


Environmental Science & Technology | 2014

Artificially Accelerating the Reversal of Desertification: Cyanobacterial Inoculation Facilitates the Succession of Vegetation Communities

Shubin Lan; Qingyi Zhang; Li Wu; Yongding Liu; Delu Zhang; Chunxiang Hu

Desertification has been recognized as a global environmental problem, and one region experiencing ongoing desertification is the eastern edge of Qubqi Desert (Inner Mongolia). To investigate the facilitating effects of cyanobacterial inoculation technology on the desertification control along this steppe-desert transition region, artificial cyanobacterial crusts were constructed with two filamentous cyanobacteria 3 and 8 years ago combined with Salix planting. The results showed that no crusts formed after 3 years of fixation only with Salix planting, whereas after cyanobacterial inoculation, the crusts formed quickly and gradually succeed to moss crusts. During that course, topsoil environments were gradually improved, providing the necessary material basis for the regeneration of vascular plants. In this investigation, total 27 species of vascular plants had regenerated in the experimental region, mainly belonging to Asteraceae, Poaceae, Chenopodiaceae and Leguminosae. Using space time substitution, the dominant species along with the application of cyanobacterial inoculation technology succeeded from Agriophyllum squarrosum ultimately to Leymus chinensis. In addition, it was found that the shady side of the dunes is more conducive to crust development and succession of vegetation communities. Conclusively, our results indicate artificial cyanobacterial inoculation technology is an effective and desirable path for desertification control.


Bioresource Technology | 2013

Evaluation of oil-producing algae as potential biodiesel feedstock

Xuping Zhou; Hongmei Ge; Ling Xia; Delu Zhang; Chunxiang Hu

This study attempted to connect the dots between laboratory research and the outdoors. Chlorella sp. NJ-18 was selected among seven oil-producing algae cultivated in this study because it had the highest lipid productivity. The nitrogen and phosphorus concentrations for cultivating this Chlorella strain were optimized indoors. This strain was incubated outdoors in a 70 L photobioreactor, containing the favorable nitrogen (8.32 mM urea) and phosphorus (0.18 mM monopotassium phosphate) concentrations. Semi-continuous cultivation was performed by harvesting 30 L biomass and replacing it with fresh medium. The maximum biomass and lipid productivity acquired outdoors were 91.84 and 24.05 mg L(-1) d(-1), respectively. Furthermore, biomass productivity could be maintained at a high level throughout the cultivation process when using the semi-continuous mode, whereas it decreased dramatically in batch cultures. More than 95% of the total fatty acids obtained were C16 and C18, which are the main components for biofuel.


Bioresource Technology | 2014

NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans

Ling Xia; Junfeng Rong; Haijian Yang; Qiaoning He; Delu Zhang; Chunxiang Hu

In order to evaluate the efficiency and potential of salt addition-based two-stage cultivation technology, on the basis of urea as nitrogen source, we compared four types of salts (NaCl, NaHCO3, NaS2O3 and NaAc) as inducers for lipid production in Desmodesmus abundans. The maximum biomass productivity (270.08mgL(-1)d(-1)) was obtained by using 0.25gL(-1) urea. The highest lipid productivity (67.08mgL(-1)d(-1)) and better biodiesel quality were realized by addition of 20gL(-1) NaCl, and the optimal time point for salt addition was determined at 1.79gL(-1) of biomass density. Further cost analysis demonstrated this cultivation process was relatively economical. Above results suggest that NaCl addition is an economical and applicable strategy for lipid enhancement and can be extended for microalgae-based biodiesel production.


Plant and Soil | 2012

Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts

Shubin Lan; Li Wu; Delu Zhang; Chunxiang Hu

AbstractsAimsIn Dalateqi region of Inner Mongolia (at eastern edge of Qubqi Desert), man-made algae crusts were constructed with two filamentous cyanobacteria. Two to three years later, the algae crusts began to succeed to moss crusts under some microterrain conditions. In order to characterize the community structure and compare the photosynthetic characteristics in different successional stages of biological soil crusts (BSCs).MethodsThis paper studied composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency, with microscopic observation and chlorophyll fluorescence monitoring techniques.ResultsCompared with the early successional algae crusts, later moss crusts had a higher photosynthetic efficiency, which was closely related with the different community structure of photosynthetic organisms. Further, moss crusts had a higher total photosynthetic biomass, although the algal biomass decreased along the successional sequence. Similar to higher vascular plants, a midday depression of photosynthetic efficiency was detected in BSCs, although the depression extents were different in different successional stages. Analysis demonstrated the depression was mainly caused by non-stomata limitations, and photosynthetically active radiation (PAR) was a significant influencing factor in the down-regulation of photosynthetic efficiency.ConclusionsWe conclude, cyanobacterial inoculation effectively promotes the formation, development and seccession of BSCs. Furthermore, the later successional BSCs have a better photosynthetic performance and thus are expected to play a more effective role in desertification control.


Bioresource Technology | 2013

Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions.

Xuping Zhou; Ling Xia; Hongmei Ge; Delu Zhang; Chunxiang Hu

Chlorella sp. (FACHB-1748) was cultivated outdoors under natural sunlight to evaluate its potential for biofuel production. Urea was selected as nitrogen source, and the concentration was optimized. When the culture reached the late exponential stage, a triggering lipid accumulation test was conducted using different concentrations of sodium chloride and acetate. A scaling-up experiment was also conducted in a 70L photobioreactor. The highest biomass productivity (222.42, 154.48 mg/L/d) and lipid productivity (64.30, 33.69mg/L/d) were obtained with 0.1g/L urea in 5 and 70 L bioreactors, respectively. The highest lipid content (43.25%) and lipid yield (1243.98 mg/L) were acquired with the combination of 10 g/L sodium chloride and acetate. Moreover, the qualities of biodiesel, cetane number, saponification value, iodine value, and cold filter plugging point complied with the standards set by the National Petroleum Agency (ANP255), Standard ASTMD6751, and European Standard (EN 14214).


Science China-life Sciences | 2010

Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia.

Shubin Lan; Chunxiang Hu; Benqiang Rao; Li Wu; Delu Zhang; Yongding Liu

In arid and semiarid areas, water uptake (non-rainfall water) serves as an important water source for plants, biological soil crusts, insects and small animals. In this study, a measurement program was undertaken to investigate water uptake and its changes during formation of man-made algal crusts in the Qubqi Desert. In the study region, water uptake from the atmosphere accounted for 25.07%–39.83% of the total water uptake, and was mainly taken up by a water vapor adsorption mechanism; the proportion of water uptake from the soil substrate was much higher (60.17%–74.93%). The formation of crusts promoted water uptake, but the increased uptake did not occur immediately after inoculation or crusts formation. The water taken up from the atmosphere increased significantly from day 15 after inoculation, and the soil water content was markedly enhanced from day 20 after inoculation. It is considered that the growth of algal filaments and their secretions were the main factors increasing the amount of water uptake and water content in the crusts, and these variables increased even during dry periods when some algae are likely to have died.

Collaboration


Dive into the Delu Zhang's collaboration.

Top Co-Authors

Avatar

Chunxiang Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shubin Lan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongding Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gaohong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ling Xia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuping Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongmei Ge

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kun Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dunhai Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge