Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Demetrios T. Braddock is active.

Publication


Featured researches published by Demetrios T. Braddock.


Nature | 2014

Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

Anila K. Madiraju; Derek M. Erion; Yasmeen Rahimi; Xian-Man Zhang; Demetrios T. Braddock; Ronald A. Albright; Brett J. Prigaro; John L. Wood; Sanjay Bhanot; Michael J. MacDonald; Michael J. Jurczak; João-Paulo G. Camporez; Hui-Young Lee; Gary W. Cline; Varman T. Samuel; Richard G. Kibbey; Gerald I. Shulman

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin’s blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Nature | 2015

MicroRNA silencing for cancer therapy targeted to the tumour microenvironment

Christopher J. Cheng; Raman Bahal; Imran Babar; Zachary Pincus; Francisco N. Barrera; Connie Liu; Alexander A. Svoronos; Demetrios T. Braddock; Peter M. Glazer; Donald M. Engelman; W. Mark Saltzman; Frank J. Slack

MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.


Nature | 2002

Structure and dynamics of KH domains from FBP bound to single-stranded DNA

Demetrios T. Braddock; John M. Louis; James L. Baber; David Levens; G. Marius Clore

Gene regulation can be tightly controlled by recognition of DNA deformations that are induced by stress generated during transcription. The KH domains of the FUSE-binding protein (FBP), a regulator of c-myc expression, bind in vivo and in vitro to the single-stranded far-upstream element (FUSE), 1,500 base pairs upstream from the c-myc promoter. FBP bound to FUSE acts through TFIIH at the promoter. Here we report the solution structure of a complex between the KH3 and KH4 domains of FBP and a 29-base single-stranded DNA from FUSE. The KH domains recognize two sites, 9–10 bases in length, separated by 5 bases, with KH4 bound to the 5′ site and KH3 to the 3′ site. The central portion of each site comprises a tetrad of sequence 5′d-ATTC for KH4 and 5′d-TTTT for KH3. Dynamics measurements show that the two KH domains bind as articulated modules to single-stranded DNA, providing a flexible framework with which to recognize transient, moving targets.


The EMBO Journal | 2002

Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA

Demetrios T. Braddock; James L. Baber; David Levens; G. Marius Clore

To elucidate the basis of sequence‐specific single‐stranded (ss) DNA recognition by K homology (KH) domains, we have solved the solution structure of a complex between the KH3 domain of the transcriptional regulator heterogeneous nuclear ribonucleoprotein K (hnRNP K) and a 10mer ssDNA. We show that hnRNP K KH3 specifically recognizes a tetrad of sequence 5′d‐TCCC. The complex is stabilized by a dense network of methyl‐oxygen hydrogen bonds involving the methyl groups of three isoleucine residues and the O2 and N3 atoms of the two central cytosine bases. Comparison with the recently solved structure of a specific protein–ssDNA complex involving the KH3 and KH4 domains of the far upstream element (FUSE) binding protein FBP suggests that the amino acid located five residues N‐terminal of the invariant GXXG motif, which is characteristic of all KH domains, plays a crucial role in discrimination of the first two bases of the tetrad.


Molecular Cancer Therapeutics | 2008

Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion

Lauren P. Saunders; Amy Ouellette; Russ Bandle; William C. Chang; Hongwen Zhou; Raj N. Misra; Enrique M. De La Cruz; Demetrios T. Braddock

Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma. [Mol Cancer Ther 2008;7(10):3352–62]


The EMBO Journal | 2008

Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition.

Gregg V. Crichlow; Hongwen Zhou; Hsin-hao Hsiao; Kendra B. Frederick; Maxime Debrosse; Yuande Yang; Ewa Folta-Stogniew; Hye-Jung Chung; Chengpeng Fan; Enrique M. De La Cruz; David Levens; Elias Lolis; Demetrios T. Braddock

c‐myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH—the FUSE binding protein (FBP) and the FBP‐interacting repressor (FIR). FBP and FIR recognize single‐stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single‐stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N‐terminal RRM domain participates in nucleic acid recognition. Site‐directed mutations of conserved residues in the first RRM domain reduce FIRs affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c‐myc transcriptional control.


Biochemistry | 2010

Quantitative Characterization of the Interactions among c-myc Transcriptional Regulators FUSE, FBP, and FIR

Hsin Hao Hsiao; Abhinav Nath; Chi Yen Lin; Ewa J. Folta-Stogniew; Elizabeth Rhoades; Demetrios T. Braddock

Human c-myc is critical for cell homeostasis and growth but is a potent oncogenic factor if improperly regulated. The c-myc far-upstream element (FUSE) melts into single-stranded DNA upon active transcription, and the noncoding strand FUSE recruits an activator [the FUSE-binding protein (FBP)] and a repressor [the FBP-interacting repressor (FIR)] to fine-tune c-myc transcription in a real-time manner. Despite detailed biological experiments describing this unique mode of transcriptional regulation, quantitative measurements of the physical constants regulating the protein-DNA interactions remain lacking. Here, we first demonstrate that the two FUSE strands adopt different conformations upon melting, with the noncoding strand DNA in an extended, linear form. FBP binds to the linear noncoding FUSE with a dissociation constant in the nanomolar range. FIR binds to FUSE more weakly, having its modest dissociation constants in the low micromolar range. FIR is monomeric under near-physiological conditions but upon binding of FUSE dimerizes into a 2:1 FIR(2)-FUSE complex mediated by the RRMs. In the tripartite interaction, our analysis suggests a stepwise addition of FIR onto an activating FBP-FUSE complex to form a quaternary FIR(2)-FBP-FUSE inhibitory complex. Our quantitative characterization enhances understanding of DNA strand preference and the mechanism of the stepwise complex formation in the FUSE-FBP-FIR regulatory system.


Journal of Biological Chemistry | 2011

Kinetic analysis of Autotaxin reveals substrate-specific catalytic pathways and a mechanism for lysophosphatidic acid distribution.

Lauren P. Saunders; Wenxiang Cao; William C. Chang; Ronald A. Albright; Demetrios T. Braddock; Enrique M. De La Cruz

Autotaxin (ATX) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), initiating signaling cascades leading to cancer metastasis, wound healing, and angiogenesis. Knowledge of the pathway and kinetics of LPA synthesis by ATX is critical for developing quantitative physiological models of LPA signaling. We measured the individual rate constants and pathway of the LPA synthase cycle of ATX using the fluorescent lipid substrates FS-3 and 12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl))-LPC. FS-3 binds rapidly (k1 ≥500 μm−1 s−1) and is hydrolyzed slowly (k2 = 0.024 s−1). Release of the first hydrolysis product is random and rapid (≥1 s−1), whereas release of the second is slow and rate-limiting (0.005–0.007 s−1). Substrate binding and hydrolysis are slow and rate-limiting with LPC. Product release is sequential with choline preceding LPA. The catalytic pathway and kinetics depend strongly on the substrate, suggesting that ATX kinetics could vary for the various in vivo substrates. Slow catalysis with LPC reveals the potential for LPA signaling to spread to cells distal to the site of LPC substrate binding by ATX. An ATX mutant in which catalytic threonine at position 210 is replaced with alanine binds substrate weakly, favoring a role for Thr-210 in binding as well as catalysis. FTY720P, the bioactive form of a drug currently used to treat multiple sclerosis, inhibits ATX in an uncompetitive manner and slows the hydrolysis reaction, suggesting that ATX inhibition plays a significant role in lymphocyte immobilization in FTY720P-based therapeutics.


Blood | 2012

NPP4 is a procoagulant enzyme on the surface of vascular endothelium

Ronald A. Albright; William C. Chang; Donna Robert; Deborah L. Ornstein; Wenxiang Cao; Lynn Liu; Meredith E. Redick; J. Isaac Young; Enrique M. De La Cruz; Demetrios T. Braddock

Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury.


Nature Communications | 2016

In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery

Raman Bahal; Nicole Ali McNeer; Elias Quijano; Yanfeng Liu; Parker Sulkowski; Audrey Turchick; Yi-Chien Lu; Dinesh C. Bhunia; Arunava Manna; Dale L. Greiner; Michael A. Brehm; Christopher J. Cheng; Francesc López-Giráldez; Adele S. Ricciardi; Diane S. Krause; Priti Kumar; Patrick G. Gallagher; Demetrios T. Braddock; W. Mark Saltzman; Danith H. Ly; Peter M. Glazer

The blood disorder, β-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the γ position plus stimulation of the stem cell factor (SCF)/c-Kit pathway yielded high levels of gene editing in haematopoietic stem cells (HSCs) in a mouse model of human β-thalassaemia. Injection of thalassemic mice with SCF plus nanoparticles containing γPNAs and donor DNAs ameliorated the disease phenotype, with sustained elevation of blood haemoglobin levels into the normal range, reduced reticulocytosis, reversal of splenomegaly and up to 7% β-globin gene correction in HSCs, with extremely low off-target effects. The combination of nanoparticle delivery, next generation γPNAs and SCF treatment may offer a minimally invasive treatment for genetic disorders of the blood that can be achieved safely and simply by intravenous administration.

Collaboration


Dive into the Demetrios T. Braddock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Levens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Marius Clore

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Baber

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge