Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dena Dorniani is active.

Publication


Featured researches published by Dena Dorniani.


International Journal of Nanomedicine | 2012

Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

Dena Dorniani; Mohd Zobir Hussein; Aminu Umar Kura; Sharida Fakurazi; Abdul Halim Shaari; Zalinah Ahmad

Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines.


Drug Design Development and Therapy | 2013

Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

Dena Dorniani; Mohd Zobir Hussein; Aminu Umar Kura; Sharida Fakurazi; Abdul Halim Shaari; Zalinah Ahmad

Background Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.


The Scientific World Journal | 2014

In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

Dena Dorniani; Aminu Umar Kura; Samer Hasan Hussein-Al-Ali; Mohd Zobir Hussein; Sharida Fakurazi; Abdul Halim Shaari; Zalinah Ahmad

The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.


International Journal of Nanomedicine | 2014

Novel kojic acid-polymer-based magnetic nanocomposites for medical applications

Samer Hasan Hussein-Al-Ali; Mohamed Ezzat El Zowalaty; Mohd Zobir Hussein; Maznah Ismail; Dena Dorniani; Thomas J. Webster

Iron oxide magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of iron salts in sodium hydroxide followed by coating separately with chitosan (CS) and polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs nanoparticles, respectively. They were then loaded with kojic acid (KA), a pharmacologically bioactive natural compound, to form KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The MNPs and their nanocomposites were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. The powder X-ray diffraction data suggest that all formulations consisted of highly crystalline, pure magnetite Fe3O4. The Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed the presence of both polymers and KA in the nanocomposites. Magnetization curves showed that both nanocomposites (KA-CS-MNPs and KA-PEG-MNPs) were superparamagnetic with saturation magnetizations of 8.1 emu/g and 26.4 emu/g, respectively. The KA drug loading was estimated using ultraviolet–visible spectroscopy, which gave a loading of 12.2% and 8.3% for the KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The release profile of the KA from the nanocomposites followed a pseudo second-order kinetic model. The agar diffusion test was performed to evaluate the antimicrobial activity for both KA-CS-MNPs and KA-PEG-MNPs nanocomposites against a number of microorganisms using two Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Salmonella enterica) species, and showed some antibacterial activity, which could be enhanced in future studies by optimizing drug loading. This study provided evidence for the promise for the further investigation of the possible beneficial biological activities of KA and both KA-CS-MNPs and KA-PEG-MNPs nanocomposites in nanopharmaceutical applications.


Materials Science and Engineering: C | 2017

Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid

Farahnaz Barahuie; Bullo Saifullah; Dena Dorniani; Sharida Fakurazi; Govindarajan Karthivashan; Mohd Zobir Hussein; Fawzi M. Elfghi

We have synthesized graphene oxide using improved Hummers method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.


International Journal of Nanomedicine | 2017

Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system

Farahnaz Barahuie; Dena Dorniani; Bullo Saifullah; Sivapragasam Gothai; Mohd Zobir Hussein; Ashok Kumar Pandurangan; Palanisamy Arulselvan; Mohd Esa Norhaizan

Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.


International Journal of Molecular Sciences | 2013

Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications

Dena Dorniani; Mohd Zobir Hussein; Aminu Umar Kura; Sharida Fakurazi; Abdul Halim Shaari; Zalinah Ahmad

The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.


Journal of Biomaterials Applications | 2014

Arginine-chitosan- and arginine-polyethylene glycol-conjugated superparamagnetic nanoparticles: Preparation, cytotoxicity and controlled-release.

Samer Hasan Hussein-Al-Ali; Palanisamy Arulselvan; Sharida Fakurazi; Mohd Zobir Hussein; Dena Dorniani

Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS–MNPs and PEG–MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg–CS–MNP and Arg–PEG–MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg–CS–MNP and Arg–PEG–MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV–vis measurements, which yielded values of 5.5% and 11% for the Arg–CS–MNP and Arg–PEG–MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg–CS–MNPs, and Arg–PEG–MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg–CS–MNPs, and Arg–PEG–MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg–CS–MNP and Arg–PEG–MNP nanocomposites reduced the cancer cell viability with IC50 values of 48.6 and 42.6 µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells.


The Scientific World Journal | 2014

Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Coated Magnetite Nanoparticles Delivery System

Dena Dorniani; Aminu Umar Kura; Samer Hasan Hussein-Al-Ali; Mohd Zobir Hussein; Sharida Fakurazi; Abdul Halim Shaari; Zalinah Ahmad

The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.


NANO | 2014

Synthesis, characterization, controlled release and cytotoxic effect of anthranilic acid-loaded chitosan and polyethylene glycol-magnetic nanoparticles on murine macrophage raw 264.7 cells

Samer Hasan Hussein-Al-Ali; Palanisamy Arulselvan; Mohd Zobir Hussein; Sharida Fakurazi; Maznah Ismail; Dena Dorniani; Mohammad Ezzat El Zowalaty

Magnetic nanoparticles (MNPs) were prepared by the coprecipitation method using a molar ratio of Fe3+:Fe2+ of 2:1. The surface of MNP was coated with chitosan (CS) and polyethylene glycol (PEG) to form CS–MNP and PEG–MNP nanoparticles, respectively. Anthranilic acid (AA) was loaded on the surface of the resulting nanoparticles to form AA–CS–MNP and AA–PEG–MNP nanocomposites, respectively. The nanocomposites obtained were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM). XRD results showed that the as-synthesized nanocomposites are pure magnetite. FTIR results analysis indicated the existence of two polymers on the particle surface of the MNP and the presence of loaded AA on the surface of CS–MNP and PEG–MNP nanoparticles. Anthranilic acid loading and the release profiles of AA–CS–MNP and AA–PEG–MNP nanocomposites showed that up to 8.8% and 5.5% of the adsorbed drug were released in 670 min and 771 min, respectively. Anthranilic acid release profiles followed a pseudo-second-order kinetic controlled process. The cytotoxicity of the as-synthesized anthranilic acid nanocomposities were determined using MTT assay using murine macrophage RAW 264.7 cells. MTT results showed that the cytotoxic effects of AA–CS–MNP were higher than AA–PEG–MNP against the tested cells as compared to free anthranilic acid. In this manner, this study introduces novel anthranilic acid nanocomposites that can be used on-demand for biomedical applications.

Collaboration


Dive into the Dena Dorniani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aminu Umar Kura

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zalinah Ahmad

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Bullo Saifullah

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge