Denis Arsenijevic
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Arsenijevic.
Nature Genetics | 2000
Denis Arsenijevic; Hiroki Onuma; Claire Pecqueur; Serge Raimbault; Brian S. Manning; Bruno Miroux; Elodie Couplan; Marie-Clotilde Alves-Guerra; Marc Goubern; Richard S. Surwit; Frédéric Bouillaud; Denis Richard; Sheila Collins; Daniel Ricquier
The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1–3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2−/− mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2−/− mice (63% decrease, P<0.04). Macrophages from Ucp2 −/− mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.
Journal of Neurochemistry | 2004
Fabienne de Bilbao; Denis Arsenijevic; Philippe Vallet; Ole P. Hjelle; Ole Petter Ottersen; Constantin Bouras; Yvette Raffin; Karin Abou; Wolfgang Langhans; Sheila Collins; Julie Plamondon; Marie-Clotilde Alves-Guerra; Anne Haguenauer; Irene Garcia; Denis Richard; Daniel Ricquier; Panteleimon Giannakopoulos
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild‐type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri‐infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end‐labelling (TUNEL)‐labelled cells in the peri‐infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia.
Journal of Neurochemistry | 2009
Fabienne de Bilbao; Denis Arsenijevic; Thomas Moll; Irene Garcia‐Gabay; Philippe Vallet; Wolfgang Langhans; Panteleimon Giannakopoulos
Early studies showed that the administration of the anti‐inflammatory cytokine interleukin‐10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO‐related molecular mechanisms. IL10 was over‐expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti‐inflammatory factors such as nerve growth factor and GSH were up‐regulated and the pro‐inflammatory cytokine IL1β was down‐regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro‐inflammatory cytokines, including tumor necrosis factor‐α, interferon‐γ, and IL1β. Our data indicate that constitutive IL10 over‐expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.
Journal of Cerebral Blood Flow and Metabolism | 2006
Denis Arsenijevic; Fabienne de Bilbao; Julie Plamondon; Eric Paradis; Philippe Vallet; Denis Richard; Wolfgang Langhans; Panteleimon Giannakopoulos
Peroxisome proliferator-activated receptors (PPARs) are involved in energy expenditure, regulation of inflammatory processes, and cellular protection in peripheral tissues. Among the different types of PPARs, PPARβ is the only one to be widely expressed in cortical neurons. Using PPARβ knockout (KO) mice, we report here a detailed investigation of the role of PPARβ in cerebral ischemic damage, associated inflammatory and antioxidant processes as well as food intake regulation after middle cerebral artery occlusion (MCAO). The PPARβ KO mice had a two-fold increase in infarct size compared with wild-type (WT) mice. Brain oxidative stress was dramatically enhanced in these KO mice, as documented by an increased content of malondialdehyde, decreased levels of glutathione and manganese superoxide dismutase, and no induction of uncoupling protein 2 (UCP2) mRNA. Unlike WT mice, PPARβ KO mice showed a marked increase of prooxidant interferon-gamma but no induction of nerve growth factor and tumor necrosis factor alpha after MCAO. In WT mice, MCAO resulted in inflammation-specific transient hyperphagia from day 3 to day 5 after ischemia, which was associated with an increase in neuropeptide Y (NPY) mRNA. This hyperphagic phase and NPY mRNA induction were not observed in PPARβ KO mice. Furthermore, our study also suggests for the first time that UCP2 is involved in MCAO food intake response. These data indicate that PPARβ plays an important role in integrating and regulating central inflammation, antioxidant mechanisms, and food intake after MCAO, and suggest that the use of PPARβ agonists may be of interest for the prevention of central ischemic damage.
Neurobiology of Disease | 2004
Eric Paradis; Sébastien Clavel; P Julien; M.R.V Murthy; F. de Bilbao; Denis Arsenijevic; Panteleimon Giannakopoulos; Philippe Vallet; Denis Richard
Lipoprotein and endothelial lipases are members of the triglyceride lipase gene family. These genes are expressed in the brain, where the encoded proteins are fulfilling functions that have yet to be elucidated. In this study, we examined the distribution of their respective mRNAs in the C57BL/6 mouse brain by in situ hybridization. In control mice, we observed widespread expression of lipoprotein lipase (LPL) mRNA mainly in pyramidal cells of the hippocampus (CA1, CA2 and CA3 areas), in the striatum and in several cortical areas. Endothelial lipase (EL) mRNA expression was restricted to CA3 pyramidal cells of the hippocampus, to ependymal cells in the ventral part of the third ventricle and to some cortical cell layers. To gain insight into the role played by lipases in the brain, neurodegeneration was induced by intraperitoneal injection of kainic acid (KA) or by occlusion of the middle cerebral artery (MCA). Upon injection of KA, a rapid increase in EL mRNA expression was observed in the piriform cortex, hippocampus, thalamus and neocortex. However, the levels of LPL mRNA were unaffected by KA injection. Remarkably, after focal cerebral ischemia, the expression of EL was unaffected whereas a dramatic increase in LPL expression was observed in neocortical areas of the lesioned side of the brain. These results show that LPL and EL transcripts are selectively upregulated in function of the type of brain injury. LPL and EL could thus fulfill a function in the pathophysiological response of the brain to injury.
Brain Behavior and Immunity | 2008
Csilla Becskei; Thomas Riediger; Noémi Hernádfalvy; Denis Arsenijevic; Thomas A. Lutz; Wolfgang Langhans
The arcuate nucleus (Arc) and the lateral hypothalamic area (LHA), two key hypothalamic nuclei regulating feeding behavior, express c-Fos, a marker of neuronal activation in fasted animals. This is reversed by refeeding. In the present study we tested whether an anorectic dose of lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, also inhibits fasting-induced c-Fos expression in these hypothalamic nuclei. This would suggest that they are involved in anorexia during bacterial infections as well. We also studied whether LPS modulates the activity of orexin-A positive (OX+) LHA neurons. Food deprived BALB/c mice were injected with LPS or saline and were sacrificed 4 or 6h later. Four hours after injection, LPS reduced the number of c-Fos positive cells in the Arc and in the LHA, but had no effect on c-Fos in OX+ neurons. Six hours after injection, LPS reduced c-Fos expression in the LHA, both in the OX- and OX+ neurons, but not in the Arc. These results show that LPS modulates neuronal activity in the Arc and LHA similar to feeding-related stimuli, suggesting that the observed effects might contribute to the anorectic effect of LPS. Thus, physiological satiety signals released during refeeding and anorexia during bacterial infection seem to engage similar neuronal substrates.
Endocrinology | 2014
Jordi Altirriba; Anne-Laure Poher; Aurélie Caillon; Denis Arsenijevic; Christelle Veyrat-Durebex; Jacqueline Lyautey; Abdul G. Dulloo; Françoise Rohner-Jeanrenaud
Oxytocin has been suggested as a novel therapeutic against obesity, because it induces weight loss and improves glucose tolerance in diet-induced obese rodents. A recent clinical pilot study confirmed the oxytocin-induced weight-reducing effect in obese nondiabetic subjects. Nevertheless, the mechanisms involved and the impact on the main comorbidity associated with obesity, type 2 diabetes, are unknown. Lean and ob/ob mice (model of obesity, hyperinsulinemia, and diabetes) were treated for 2 weeks with different doses of oxytocin, analogues with longer half-life (carbetocin) or higher oxytocin receptor specificity ([Thr4,Gly7]-oxytocin). Food and water intake, body weight, and glycemia were measured daily. Glucose, insulin, and pyruvate tolerance, body composition, several hormones, metabolites, gene expression, as well as enzyme activities were determined. Although no effect of oxytocin on the main parameters was observed in lean mice, the treatment dose-dependently reduced food intake and body weight gain in ob/ob animals. Carbetocin behaved similarly to oxytocin, whereas [Thr4,Gly7]-oxytocin (TGOT) and a low oxytocin dose decreased body weight gain without affecting food intake. The body weight gain-reducing effect was limited to the fat mass only, with decreased lipid uptake, lipogenesis, and inflammation, combined with increased futile cycling in abdominal adipose tissue. Surprisingly, oxytocin treatment of ob/ob mice was accompanied by a worsening of basal glycemia and glucose tolerance, likely due to increased corticosterone levels and stimulation of hepatic gluconeogenesis. These results impose careful selection of the conditions in which oxytocin treatment should be beneficial for obesity and its comorbidities, and their relevance for human pathology needs to be determined.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Barbara Becattini; Romina Marone; Fabio Zani; Denis Arsenijevic; Josiane Seydoux; Jean-Pierre Montani; Abdul G. Dulloo; Bernard Thorens; Frédéric Preitner; Matthias P. Wymann; Giovanni Solinas
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Diabetes | 2009
Serge Summermatter; Helena Marcelino; Denis Arsenijevic; Antony Buchala; Olivier Aprikian; Françoise Assimacopoulos-Jeannet; Josiane Seydoux; Jean-Pierre Montani; Giovanni Solinas; Abdul G. Dulloo
OBJECTIVE Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue.
Diabetes | 2013
Helena Marcelino; Christelle Veyrat-Durebex; Serge Summermatter; Delphine Sarafian; Jennifer L. Miles-Chan; Denis Arsenijevic; Fabio Zani; Jean-Pierre Montani; Josiane Seydoux; Giovanni Solinas; Françoise Rohner-Jeanrenaud; Abdul G. Dulloo
Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.