Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Boyer is active.

Publication


Featured researches published by Denis Boyer.


arXiv: Populations and Evolution | 2006

Scale-free foraging by primates emerges from their interaction with a complex environment

Denis Boyer; Gabriel Ramos-Fernández; Octavio Miramontes; José L. Mateos; Germinal Cocho; Hernán Larralde; Humberto Ramos; Fernando Rojas

Scale-free foraging patterns are widespread among animals. These may be the outcome of an optimal searching strategy to find scarce, randomly distributed resources, but a less explored alternative is that this behaviour may result from the interaction of foraging animals with a particular distribution of resources. We introduce a simple foraging model where individual primates follow mental maps and choose their displacements according to a maximum efficiency criterion, in a spatially disordered environment containing many trees with a heterogeneous size distribution. We show that a particular tree-size frequency distribution induces non-Gaussian movement patterns with multiple spatial scales (Lévy walks). These results are consistent with field observations of tree-size variation and spider monkey (Ateles geoffroyi) foraging patterns. We discuss the consequences that our results may have for the patterns of seed dispersal by foraging primates.


Behavioral Ecology and Sociobiology | 2006

A complex social structure with fission-fusion properties can emerge from a simple foraging model

Gabriel Ramos-Fernández; Denis Boyer; Vian P. Gómez

Precisely how ecological factors influence animal social structure is far from clear. We explore this question using an agent-based model inspired by the fission–fusion society of spider monkeys (Ateles spp). Our model introduces a realistic, complex foraging environment composed of many resource patches with size varying as an inverse power law frequency distribution with exponent β. Foragers do not interact among them and start from random initial locations. They have either a complete or a partial knowledge of the environment and maximize the ratio between the size of the next visited patch and the distance traveled to it, ignoring previously visited patches. At intermediate values of β, when large patches are neither too scarce nor too abundant, foragers form groups (coincide at the same patch) with a similar size frequency distribution as the spider monkey’s subgroups. Fission–fusion events create a network of associations that contains weak bonds among foragers that meet only rarely and strong bonds among those that repeat associations more frequently than would be expected by chance. The latter form subnetworks with the highest number of bonds and a high clustering coefficient at intermediate values of β. The weak bonds enable the whole social network to percolate. Some of our results are similar to those found in long-term field studies of spider monkeys and other fission–fusion species. We conclude that hypotheses about the ecological causes of fission–fusion and the origin of complex social structures should consider the heterogeneity and complexity of the environment in which social animals live.


Philosophical Transactions of the Royal Society A | 2010

Modelling the mobility of living organisms in heterogeneous landscapes: does memory improve foraging success?

Denis Boyer; Peter D. Walsh

Thanks to recent technological advances, it is now possible to track with an unprecedented precision and for long periods of time the movement patterns of many living organisms in their habitat. The increasing amount of data available on single trajectories offers the possibility of understanding how animals move and of testing basic movement models. Random walks have long represented the main description for micro-organisms and have also been useful to understand the foraging behaviour of large animals. Nevertheless, most vertebrates, in particular humans and other primates, rely on sophisticated cognitive tools such as spatial maps, episodic memory and travel cost discounting. These properties call for other modelling approaches of mobility patterns. We propose a foraging framework where a learning mobile agent uses a combination of memory-based and random steps. We investigate how advantageous it is to use memory for exploiting resources in heterogeneous and changing environments. An adequate balance of determinism and random exploration is found to maximize the foraging efficiency and to generate trajectories with an intricate spatio-temporal order, where travel routes emerge without multi-step planning. Based on this approach, we propose some tools for analysing the non-random nature of mobility patterns in general.


Physica A-statistical Mechanics and Its Applications | 2004

Modeling the searching behavior of social monkeys

Denis Boyer; Octavio Miramontes; Gabriel Ramos-Fernández; JoséLuis Mateos; G. Cocho

We discuss various features of the trajectories of spider monkeys looking for food in a tropical forest, as observed recently in an extensive in situ study. Some of the features observed can be interpreted as the result of social interactions. In addition, a simple model of deterministic walk in a random environment reproduces the observed angular correlations between successive steps, and in some cases, the emergence of Levy distributions for the length of the steps.


PLOS ONE | 2012

The Effects of Spatially Heterogeneous Prey Distributions on Detection Patterns in Foraging Seabirds

Octavio Miramontes; Denis Boyer; Frederic Bartumeus

Many attempts to relate animal foraging patterns to landscape heterogeneity are focused on the analysis of foragers movements. Resource detection patterns in space and time are not commonly studied, yet they are tightly coupled to landscape properties and add relevant information on foraging behavior. By exploring simple foraging models in unpredictable environments we show that the distribution of intervals between detected prey (detection statistics) is mostly determined by the spatial structure of the prey field and essentially distinct from predator displacement statistics. Detections are expected to be Poissonian in uniform random environments for markedly different foraging movements (e.g. Lévy and ballistic). This prediction is supported by data on the time intervals between diving events on short-range foraging seabirds such as the thick-billed murre (Uria lomvia). However, Poissonian detection statistics is not observed in long-range seabirds such as the wandering albatross (Diomedea exulans) due to the fractal nature of the prey field, covering a wide range of spatial scales. For this scenario, models of fractal prey fields induce non-Poissonian patterns of detection in good agreement with two albatross data sets. We find that the specific shape of the distribution of time intervals between prey detection is mainly driven by meso and submeso-scale landscape structures and depends little on the forager strategy or behavioral responses.


Physical Review E | 2002

Grain boundary pinning and glassy dynamics in stripe phases

Denis Boyer; Jorge Viñals

We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the nonadiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value R(g) approximately lambda(0)epsilon(-1/2)exp(absolute value of a/square root of epsilon), where epsilon<<1 is the dimensionless distance away from threshold, lambda(0) the stripe wavelength, and a a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.


Physical Review E | 2007

Origin of power-law distributions in deterministic walks: the influence of landscape geometry.

M. C. Santos; Denis Boyer; Octavio Miramontes; G. M. Viswanathan; Ernesto P. Raposo; JoséLuis Mateos; M. G. E. da Luz

We investigate the properties of a deterministic walk, whose locomotion rule is always to travel to the nearest site. Initially the sites are randomly distributed in a closed rectangular (ALxL) landscape and, once reached, they become unavailable for future visits. As expected, the walker step lengths present characteristic scales in one (L-->0) and two (AL approximately L) dimensions. However, we find scale invariance for an intermediate geometry, when the landscape is a thin striplike region. This result is induced geometrically by a dynamical trapping mechanism, leading to a power-law distribution for the step lengths. The relevance of our findings in broader contexts--of both deterministic and random walks--is also briefly discussed.


Physical Review Letters | 2014

Random Walks with Preferential Relocations to Places Visited in the Past and their Application to Biology

Denis Boyer; Citlali Solis-Salas

Strongly non-Markovian random walks offer a promising modeling framework for understanding animal and human mobility, yet, few analytical results are available for these processes. Here we solve exactly a model with long range memory where a random walker intermittently revisits previously visited sites according to a reinforced rule. The emergence of frequently visited locations generates very slow diffusion, logarithmic in time, whereas the walker probability density tends to a Gaussian. This scaling form does not emerge from the central limit theorem but from an unusual balance between random and long-range memory steps. In single trajectories, occupation patterns are heterogeneous and have a scale-free structure. The model exhibits good agreement with data of free-ranging capuchin monkeys.


Physical Biology | 2011

Buckling instability in ordered bacterial colonies

Denis Boyer; William Mather; Octavio Mondragón-Palomino; Sirio Orozco-Fuentes; Tal Danino; Jeff Hasty; Lev S. Tsimring

Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.


Journal of the Royal Society Interface | 2012

Non-random walks in monkeys and humans

Denis Boyer; Margaret C. Crofoot; Peter D. Walsh

Principles of self-organization play an increasingly central role in models of human activity. Notably, individual human displacements exhibit strongly recurrent patterns that are characterized by scaling laws and can be mechanistically modelled as self-attracting walks. Recurrence is not, however, unique to human displacements. Here we report that the mobility patterns of wild capuchin monkeys are not random walks, and they exhibit recurrence properties similar to those of cell phone users, suggesting spatial cognition mechanisms shared with humans. We also show that the highly uneven visitation patterns within monkey home ranges are not entirely self-generated but are forced by spatio-temporal habitat heterogeneities. If models of human mobility are to become useful tools for predictive purposes, they will need to consider the interaction between memory and environmental heterogeneities.

Collaboration


Dive into the Denis Boyer's collaboration.

Top Co-Authors

Avatar

Gabriel Ramos-Fernández

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Octavio Miramontes

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hernán Larralde

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Margaret C. Crofoot

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge