Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis G. Colombant is active.

Publication


Featured researches published by Denis G. Colombant.


Physics of Plasmas | 1998

Direct-Drive Laser Fusion; Status and Prospects

Stephen E. Bodner; Denis G. Colombant; John H. Gardner; R. H. Lehmberg; Stephen P. Obenschain; Lee Phillips; Andrew J. Schmitt; J. D. Sethian; R. L. McCrory; W. Seka; C. P. Verdon; J. P. Knauer; Bedros Afeyan; Howard T. Powell

Techniques have been developed to improve the uniformity of the laser focal profile, to reduce the ablative Rayleigh–Taylor instability, and to suppress the various laser–plasma instabilities. There are now three direct-drive ignition target designs that utilize these techniques. An evaluation of these designs is still ongoing. Some of them may achieve the gains above 100 that are necessary for a fusion reactor. Two laser systems have been proposed that may meet all of the requirements for a fusion reactor.


Physics of Fluids | 1982

Steady-state planar ablative flow

Wallace M. Manheimer; Denis G. Colombant; John H. Gardner

Steady‐state planar ablative flow in a laser produced plasma is studied. The calculations relate all steady‐state fluid quantities to only three parameters, the material, absorbed irradiance, and laser wavelength. The fluid is divided into three regions; the subcritical expanding plasma, the steady‐state ablation front, and the accelerated slab. Boundary conditions at the interfaces of these regions are given. If the absorbed irradiance is nonuniform, the nonuniformity in ablation pressure is calculated. Results are compared with experiment and fluid simulation for both uniform and nonuniform illumination.


Physics of Plasmas | 1996

The Nike KrF laser facility: Performance and initial target experiments

S. P. Obenschain; Stephen E. Bodner; Denis G. Colombant; K. A. Gerber; R. H. Lehmberg; E. A. McLean; A. N. Mostovych; Mark S. Pronko; Carl J. Pawley; Andrew J. Schmitt; J. D. Sethian; V. Serlin; J. A. Stamper; C. A. Sullivan; Jill P. Dahlburg; John H. Gardner; Y.-L. Chan; A. V. Deniz; J. Hardgrove; Thomas Lehecka; M. Klapisch

Krypton‐fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser–target coupling. Nike is a recently completed 56‐beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half‐maximum), Nike produces more uniform focal distributions than any other high‐energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.


Physics of Plasmas | 2000

High-gain direct-drive target design for laser fusion

Stephen E. Bodner; Denis G. Colombant; Andrew J. Schmitt; M. Klapisch

A new laser fusion target concept is presented with a predicted energy gain of 127 using a 1.3 MJ KrF laser. This energy gain is sufficiently high for an economically attractive fusion reactor. X rays from high- and low-Z materials are used in combination with a low-opacity ablator to spatially tune the isentrope, thereby providing both high fuel compression and a reduction of the ablative Rayleigh–Taylor instability.


Physical Review Letters | 1991

Quantum extension of Child-Langmuir law.

Y. Y. Lau; D. Chernin; Denis G. Colombant; P.-T. Ho

1407_69Using a simple mean field model of the electron-electron interaction, study has been done of the effect of space charge in a planar diode. Results show, in particular, that the classical value for the limiting current in such a diode can be exceeded by a large factor due to the effect of tunneling. The smooth transition of the solutions from the quantum to the classical (non-quantum) regime is demonstrated.© (1991) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.


Physics of Plasmas | 2008

Performance of direct-drive cryogenic targets on OMEGA

V.N. Goncharov; T. C. Sangster; P. B. Radha; R. Betti; T. R. Boehly; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; R. Epstein; V. Yu. Glebov; S. X. Hu; Igor V. Igumenshchev; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; S. P. Regan; W. Seka; S. Skupsky; V. A. Smalyuk; J. M. Soures; C. Stoeckl; D. Shvarts; J. A. Frenje; R. D. Petrasso; C. K. Li; F. H. Séguin

The success of direct-drive-ignition target designs depends on two issues: the ability to maintain the main fuel adiabat at a low level and the control of the nonuniformity growth during the implosion. A series of experiments was performed on the OMEGA Laser System [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to study the physics of low-adiabat, high-compression cryogenic fuel assembly. Modeling these experiments requires an accurate account for all sources of shell heating, including shock heating and suprathermal electron preheat. To increase calculation accuracy, a nonlocal heat-transport model was implemented in the 1D hydrocode. High-areal-density cryogenic fuel assembly with ρR>200mg∕cm2 [T. C. Sangster, V. N. Goncharov, P. B. Radha et al., “High-areal-density fuel assembly in direct-drive cryogenic implosions,” Phys. Rev. Lett. (submitted)] has been achieved on OMEGA in designs where the shock timing was optimized using the nonlocal treatment of the heat conductio...


Physics of Plasmas | 1997

Measurements of laser-imprinted perturbations and Rayleigh–Taylor growth with the Nike KrF laser

Carl J. Pawley; K. A. Gerber; R. H. Lehmberg; E. A. McLean; A. N. Mostovych; S. P. Obenschain; J. D. Sethian; V. Serlin; J. A. Stamper; C. A. Sullivan; Stephen E. Bodner; Denis G. Colombant; Jill P. Dahlburg; Andrew J. Schmitt; John H. Gardner; C. M. Brown; John F. Seely; Thomas Lehecka; Y. Aglitskiy; A. V. Deniz; Y.-L. Chan; Nathan Metzler; M. Klapisch

Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity 〈ΔI/I〉 of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by 37, to (ΔI/I)≅0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh–Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 A rms randomly rough surface finish driven by a completely unif...


Physics of Plasmas | 2002

Effects of Thin High-z Layers on the Hydrodynamics of Laser-Accelerated Plastic Targets

S. P. Obenschain; Denis G. Colombant; Max Karasik; Carl J. Pawley; V. Serlin; Andrew J. Schmitt; J.L. Weaver; John H. Gardner; Lee Phillips; Y. Aglitskiy; Y.-L. Chan; Jill Potkalitsky Dahlburg; M. Klapisch

Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X ra...


Physics of Plasmas | 2008

The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory

Wallace M. Manheimer; Denis G. Colombant; V.N. Goncharov

This paper examines the Krook model as a means of quantifying the problem of nonlocal transport of electron energy in laser produced plasmas. The result is an expression for the nonlocal electron energy flux q. The roles of both flux limitation and preheat are clearly delineated. Furthermore, it develops a test for the validity of this model. This is a physics based, “first principles” model that can be economically incorporated into a fluid simulation.


Physics of Fluids | 1984

Slab model for Rayleigh–Taylor stabilization by vortex shedding, compressibility, thermal conduction, and ablation

Wallace M. Manheimer; Denis G. Colombant

Analytical models are derived for stabilization of the Rayleigh–Taylor instability of an ablatively accelerated slab. The procedure is to conserve mass, momentum, and energy flux across a perturbed interface through which plasma flows. In various regimes, the stabilization mechanism can be described as vortex shedding, compressibility, thermal conduction, and ablation. Comparisons are made with recent fluid simulations, and simple laws relevant to laser‐driven ablative acceleration are derived.

Collaboration


Dive into the Denis G. Colombant's collaboration.

Top Co-Authors

Avatar

John H. Gardner

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wallace M. Manheimer

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Schmitt

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

V. Serlin

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. P. Obenschain

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Bodner

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.L. Weaver

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Max Karasik

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Y. Aglitskiy

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Lee Phillips

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge