Denis V. Tikhonenkov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis V. Tikhonenkov.
Proceedings of the Royal Society B: Biological Sciences | 2016
Fabien Burki; Maia Kaplan; Denis V. Tikhonenkov; Vasily V. Zlatogursky; Bui Quang Minh; Liudmila V. Radaykina; Alexey V. Smirnov; Alexander P. Mylnikov; Patrick J. Keeling
Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jan Janouškovec; Denis V. Tikhonenkov; Fabien Burki; Alexis T. Howe; Martin Kolisko; Alexander P. Mylnikov; Patrick J. Keeling
Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.
PLOS ONE | 2014
Denis V. Tikhonenkov; Jan Janouškovec; Alexander P. Mylnikov; Kirill V. Mikhailov; Timur G. Simdyanov; Vladimir V. Aleoshin; Patrick J. Keeling
The evolutionary and ecological importance of predatory flagellates are too often overlooked. This is not only a gap in our understanding of microbial diversity, but also impacts how we interpret their better-studied relatives. A prime example of these problems is found in the alveolates. All well-studied species belong to three large clades (apicomplexans, dinoflagellates, and ciliates), but the predatory colponemid flagellates are also alveolates that are rare in nature and seldom cultured, but potentially important to our understanding of alveolate evolution. Recently we reported the first cultivation and molecular analysis of several colponemid-like organisms representing two novel clades in molecular trees. Here we provide ultrastructural analysis and formal species descriptions for both new species, Colponema vietnamica n. sp. and Acavomonas peruviana n. gen. n. sp. Morphological and feeding characteristics concur with molecular data that both species are distinct members of alveolates, with Acavomonas lacking the longitudinal phagocytotic groove, a defining feature of Colponema. Based on ultrastructure and molecular phylogenies, which both provide concrete rationale for a taxonomic reclassification of Alveolata, we establish the new phyla Colponemidia nom. nov. for the genus Colponema and its close relatives, and Acavomonidia nom. nov. for the genus Acavomonas and its close relatives. The morphological data presented here suggests that colponemids are central to our understanding of early alveolate evolution, and suggest they also retain features of the common ancestor of all eukaryotes.
Acta Protozoologica | 2012
Denis V. Tikhonenkov; Alexander P. Mylnikov; Ying Chun Gong; Wei Song Feng; Yuri Mazei
We studied the diversity of heterotrophic flagellates from the sandy sediments of the Yangtze River, sandy and silty sediments of Donghu Lake, soil, moss and litter from the Luojiashan and Moshan hills as well as litter from the floodplain near Donghu Lake in April 2010. Sixty-seven heterotrophic flagellate species were identified by means of phase and interference contrast light microscopy and transmission electron microscopy. The majority of the observed flagellates were bacterivorous. Local species richness of river sediment communities was significantly lower than that of lake sediments and terrestrial habitats. The communities from the terrestrial habitats were more heterogeneous than those from freshwater sediments. Common species for the aquatic habitats were Rhynchomonas nasuta, Paraphysomonas sp., Neobodo designis, N. curvifilis, Bodo saltans and Spumella spp. In the soils only Spumella spp. was found in the majority of samples. Most characteristic taxa for the lake sediments were Helkesimastix faecicola, Petalomonas minuta, P. pusilla, Diphylleia rotans, Amastigomonas caudata. Amoeboflagellates such as Cercomonas angustus, C. granulifera, Paracercomonas crassicauda were specific for the terrestrial habitats. There were no specific taxa in the river sediments. The majority of the heterotrophic flagellates identified in this survey have been noted in China earlier. They are common (and usually predominant) for other regions in both freshwater and soil habitats.
Protist | 2016
Andrey I. Azovsky; Denis V. Tikhonenkov; Yuri Mazei
Protists are ubiquitous, but the factors influencing their diversity and biogeography remain unclear. We use a comprehensive database on the marine benthic heterotrophic flagellate (HF) morphospecies to explore the worldwide patterns in their diversity and distribution in comparison with predictions of the Ubiquity model (UM) and Moderate Endemicity model (MEM). The number of known HF morphospecies was limited (even when considering the rates of descriptions), and the local-to-global diversity ratio was relatively high (10-25%). Regional diversity was highly correlated with the investigative effort, indicating considerable under-exploration. Regional endemics were few (not over 19% of total richness), and many morphospecies were widespread or even cosmopolitan. No obvious latitudinal trend in HF diversity was detected. By species composition, the regions were distinctly arranged into three groups according to cold, temperate and warm waters, but not in accordance with geographical distances. This distribution pattern was most likely explained by contemporary climate (temperature) but did not suggest clear geographical barriers for dispersal. Therefore, the HF are less concordant with the MEM predictions but closer to the UM than other (larger) protists. Molecular studies reveal significantly higher HF diversity; the distributional patterns obtained from genetic- and morphology-based data, however, complement but not generally contradict each other.
Journal of Eukaryotic Microbiology | 2015
William A. Kirby; Denis V. Tikhonenkov; Alexandre P. Mylnikov; Jan Janouškovec; Gordon Lax; Alastair G. B. Simpson
Most protozoans that have been cultivated recently from high salinity waters appear to be obligate halophiles. Phylogenetic analyses indicate that these species mostly represent independent lineages. Here, we report the cultivation, morphological characterization, and phylogenetic analysis of two strains (XLG1 and HLM‐8) of a new extremely halotolerant heterolobosean amoeboflagellate. This species is closely related to the obligate halophiles Tulamoeba peronaphora and Pleurostomum flabellatum, and more specifically to the former. Like Tulamoeba, the new species has a monopodial limax amoeba stage, however, its cyst stage lacks an intrusive pore plug. The flagellate stage bears a combination of a planar spiral feeding apparatus and unequal heterodynamic flagella that discriminates it from described Pleurostomum species. Strain XLG1 grows at salinities from 35‰ to 225‰. This degree of halotolerance is uncommon in protozoa, as most species showing growth in seawater are unable to grow at 200‰ salinity. The unrelatedness of most halophilic protozoa suggested that independent colonization of the hypersaline environment is more common than speciation within it. However, this study supports the idea that the Tulamoeba–Pleurostomum clade underwent an adaptive radiation within the hypersaline environment. A new species Tulamoeba bucina n. sp. is described, with Tulamoebidae n. fam. proposed for the Tulamoeba–Pleurostomum clade.
Current Biology | 2017
Jan Janouškovec; Denis V. Tikhonenkov; Fabien Burki; Alexis T. Howe; Forest Rohwer; Alexander P. Mylnikov; Patrick J. Keeling
The origin of eukaryotic cells represents a key transition in cellular evolution and is closely tied to outstanding questions about mitochondrial endosymbiosis [1, 2]. For example, gene-rich mitochondrial genomes are thought to be indicative of an ancient divergence, but this relies on unexamined assumptions about endosymbiont-to-host gene transfer [3-5]. Here, we characterize Ancoracysta twista, a new predatory flagellate that is not closely related to any known lineage in 201-protein phylogenomic trees and has a unique morphology, including a novel type of extrusome (ancoracyst). The Ancoracysta mitochondrion has a gene-rich genome with a coding capacity exceeding that of all other eukaryotes except the distantly related jakobids and Diphylleia, and it uniquely possesses heterologous, nucleus-, and mitochondrion-encoded cytochrome c maturase systems. To comprehensively examine mitochondrial genome reduction, we also assembled mitochondrial genomes from picozoans and colponemids and re-annotated existing mitochondrial genomes using hidden Markov model gene profiles. This revealed over a dozen previously overlooked mitochondrial genes at the level of eukaryotic supergroups. Analysis of trends over evolutionary time demonstrates that gene transfer to the nucleus was non-linear, that it occurred in waves of exponential decrease, and that much of it took place comparatively early, massively independently, and with lineage-specific rates. This process has led to differential gene retention, suggesting that gene-rich mitochondrial genomes are not a product of their early divergence. Parallel transfer of mitochondrial genes and their functional replacement by new nuclear factors are important in models for the origin of eukaryotes, especially as major gaps in our knowledge of eukaryotic diversity at the deepest level remain unfilled.
Journal of Eukaryotic Microbiology | 2016
Denis V. Tikhonenkov; Jan Janouškovec; Patrick J. Keeling; Alexander P. Mylnikov
A small free‐living freshwater bacteriotrophic flagellate Neobodo borokensis n. sp. was investigated by electron microscopy and analysis of its SSU ribosomal RNA gene. This protist has paraxonemal rods of typical bodonid structure in the flagella, mastigonemes on the proximal part of the posterior flagellum, two nearly parallel basal bodies, a compact kinetoplast, and discoid mitochondrial cristae. The flagellar pocket is supported by three microtubular roots (R1, R2 and R3) originating from the kinetosome. The cytopharynx is supported by the root R2, a microtubular prism, cytopharynx associated additional microtubules (CMT) and cytostome associated microtubules (FAS) bands. Symbiotic bacteria and small glycosomes were found in the cytoplasm. Cysts have not been found. The flagellate prefers freshwater habitats, but tolerates salinity up to 3–4‰. The overall morphological and ultrastructural features confirm that N. borokensis represents a new species of the genus Neobodo. Phylogenetic analysis of SSU rRNA genes is congruent with the ultrastructure and strongly supports the close relationship of N. borokensis to Neobodo saliens, N. designis, Actuariola, and a misidentified sequence of “Bodo curvifilus” within the class Kinetoplastea.
Open Biology | 2016
Jürgen F.H. Strassert; Denis V. Tikhonenkov; Jean-François Pombert; Martin Kolisko; Vera Tai; Alexander P. Mylnikov; Patrick J. Keeling
A new jakobid genus has been isolated from Moroccan desert soil. The cyst-forming protist Moramonas marocensis gen. nov., sp. nov. has two anteriorly inserted flagella of which one points to the posterior cell pole accompanying the ventral feeding groove and is equipped with a dorsal vane—a feature typical for the Jakobida. It further shows a flagellar root system consisting of singlet microtubular root, left root (R1), right root (R2) and typical fibres associated with R1 and R2. The affiliation of M. marocensis to the Jakobida was confirmed by molecular phylogenetic analyses of the SSU rRNA gene, five nuclear genes and 66 mitochondrial protein-coding genes. The mitochondrial genome has the high number of genes typical for jakobids, and bacterial features, such as the four-subunit RNA polymerase and Shine–Dalgarno sequences upstream of the coding regions of several genes. The M. marocensis mitochondrial genome encodes a similar number of genes as other jakobids, but is unique in its very large genome size (greater than 264 kbp), which is three to four times higher than that of any other jakobid species investigated yet. This increase seems to be due to a massive expansion in non-coding DNA, creating a bloated genome like those of plant mitochondria.
Genome Biology and Evolution | 2014
Kirill V. Mikhailov; Jan Janouškovec; Denis V. Tikhonenkov; Gulnara S. Mirzaeva; Andrei Diakin; Timur G. Simdyanov; Alexander P. Mylnikov; Patrick J. Keeling; Vladimir V. Aleoshin
Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alveolate supergroup. Alveolates comprise three major lineages: ciliates and apicomplexans encode EF1A, whereas dinoflagellates encode EFL. We searched transcriptome databases for seven early-diverging alveolate taxa that do not belong to any of these groups: colpodellids, chromerids, and colponemids. Current data suggest all seven are expected to encode EF1A, but we find three genera encode EFL: Colpodella, Voromonas, and the photosynthetic Chromera. Comparing this distribution with the phylogeny of alveolates suggests that EF1A and EFL evolution in alveolates cannot be explained by a simple horizontal gene transfer event or lineage sorting.